在平面直角坐標(biāo)系xOy中,已知圓C的圓心在第一象限,圓C與x軸交于A(1,0),B(3,0)兩點(diǎn),且與直線x-y+1=0相切,則圓C的半徑為________.


分析:設(shè)出圓心坐標(biāo),利用圓C與x軸交于A(1,0),B(3,0)兩點(diǎn),且與直線x-y+1=0相切,建立方程,即可求得圓C的半徑.
解答:由題意,設(shè)圓心坐標(biāo)為(2,b)(b>0),則=,∴b2+6b-7=0
∵b>0,∴b=1
∴圓C的半徑為
故答案為:
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知拋物線y2=2px橫坐標(biāo)為4的點(diǎn)到該拋物線的焦點(diǎn)的距離為5.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)C是拋物線上的動(dòng)點(diǎn),若以C為圓心的圓在y軸上截得的弦長為4,求證:圓C過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知?jiǎng)狱c(diǎn)P(x,y)(y≤0)到點(diǎn)F(0.-2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(I)求點(diǎn)P的軌跡E的方程;
(Ⅱ)若A、B是(I)中E上的兩點(diǎn),
.
OA
.
OB
=-16
,過A、B分別作直線y=2的垂線,垂足分別P、Q.證明:直線AB過定點(diǎn)M,且
.
MP
.
MQ
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•青浦區(qū)一模)在平面直角坐標(biāo)系xoy中,已知圓C的圓心在第二象限,半徑為2
2
且與直線y=x相切于原點(diǎn)O.橢圓
x2
a2
+
y2
9
=1
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)圓C上是否存在點(diǎn)Q,使O、Q關(guān)于直線CF(C為圓心,F(xiàn)為橢圓右焦點(diǎn))對(duì)稱,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線C:x2=4y,直線l:y=-1.PA、PB為C的兩切線,切點(diǎn)為A,B.
(Ⅰ)求證:“若P在l上,則PA⊥PB”是真命題;
(Ⅱ)寫出(Ⅰ)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城三模)在平面直角坐標(biāo)系xOy中,已知
OA
=(3,-1),
OB
=(0,2).若
OC
AB
=0,
AC
OB
,則實(shí)數(shù)λ的值為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案