若函數(shù)f(x)=x3+3bx-3b在區(qū)間(0,1)內(nèi)存在極小值,則實數(shù)b的取值范圍為( 。
A、-1<b<0
B、b>-1
C、b<0
D、b>-
1
2
分析:求出函數(shù)的導數(shù),然后令導數(shù)為零,求出函數(shù)的極值,最后確定b的范圍.
解答:解:由題意得f′(x)=3x2-3b,
令f′(x)=0,則x=±
b

又∵函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,
∴0<
b
<1,
∴b∈(0,1),
故選A.
點評:熟練運用函數(shù)的導數(shù)求解函數(shù)的極值問題,同時考查了分析問題的能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習冊答案