已知曲線y=ax3+bx2+cx+d滿足下列條件:
①過原點(diǎn);②在x=0處導(dǎo)數(shù)為-1;③在x=1處切線方程為y=4x-3.
(Ⅰ) 求實(shí)數(shù)a、b、c、d的值;
(Ⅱ)求函數(shù)y=ax3+bx2+cx+d的極值.
解(Ⅰ)y′=3ax2+2bx+c根據(jù)條件有
d=0
c=-1
3a+2b+c=4
a+b+c+d=1
解得
a=1
b=1
c=-1
d=0
(6分)
(Ⅱ)由(Ⅰ)y=x3+x2-x,y′=3x2+2x-1,(7分)
y′=0x=
1
3
或-1(9分)
x,y,y′的關(guān)系如表所示
x (-∞,-1) -1 (-1,
1
3
1
3
1
3
.+∞)
y′ + 0 - 0 +
y 極大值1 極小 -
5
27
因此函數(shù)y=x3+x2-x在x=-1處有極大值1,在x=
1
3
處有極小值-
5
27
.(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•門頭溝區(qū)一模)已知曲線y=ax3+bx2+cx+d滿足下列條件:
①過原點(diǎn);②在x=0處導(dǎo)數(shù)為-1;③在x=1處切線方程為y=4x-3.
(Ⅰ) 求實(shí)數(shù)a、b、c、d的值;
(Ⅱ)求函數(shù)y=ax3+bx2+cx+d的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考百天仿真沖刺數(shù)學(xué)試卷4(文科)(解析版) 題型:解答題

已知曲線y=ax3+bx2+cx+d滿足下列條件:
①過原點(diǎn);②在x=0處導(dǎo)數(shù)為-1;③在x=1處切線方程為y=4x-3.
(Ⅰ) 求實(shí)數(shù)a、b、c、d的值;
(Ⅱ)求函數(shù)y=ax3+bx2+cx+d的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市門頭溝區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知曲線y=ax3+bx2+cx+d滿足下列條件:
①過原點(diǎn);②在x=0處導(dǎo)數(shù)為-1;③在x=1處切線方程為y=4x-3.
(Ⅰ) 求實(shí)數(shù)a、b、c、d的值;
(Ⅱ)求函數(shù)y=ax3+bx2+cx+d的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=ax3-bxa≠0)上有兩個(gè)不同的點(diǎn)A、B,且過A、B兩點(diǎn)的切線都垂直于直線AB.

(1)試判斷A、B兩點(diǎn)是否關(guān)于原點(diǎn)對(duì)稱,并說明理由.

(2)求出a、b所滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案