解答:解:對于①,設(shè)h(x)=f(x)-g(x)=ln(x+1)-
,
∴
h′(x)=-=≥0
∵0≤x≤4
∴h(x)在[0,4]上單調(diào)增,
∵h(yuǎn)(0)=0,h(4)=
ln5-∵
|ln5-|≤1∴對任意的x∈D,都有|f(x)-g(x)|≤1,
∴函數(shù)f(x)和g(x)在D上為“密切函數(shù)”;
對于②,設(shè)h(x)=f(x)-g(x)=x
3-3x+1,
∴h′(x)=3x
2-3
∵0≤x≤4
∴0≤x≤1,h′(x)≤0,1≤x≤4,h′(x)≥0
∵h(yuǎn)(0)=1,h(1)=-1,h(4)=53
∴函數(shù)在x=1時,取得最小值-1;在x=4時,取得最大值53,
故不滿足對任意的x∈D,都有|f(x)-g(x)|≤1;
對于③,設(shè)h(x)=f(x)-g(x)=e
x-x-2,
∴h′(x)=e
x-1
∵0≤x≤4
∴h′(x)≥0
∴h(x)在[0,4]上單調(diào)增,
∵h(yuǎn)(0)=-1,h(4)=e
4-6
∵e
4-6>1
∴不滿足對任意的x∈D,都有|f(x)-g(x)|≤1;
對于④,設(shè)h(x)=f(x)-g(x)=
x-
-
.x=0時滿足題意
x≠0時,
h′(x)=-∵0<x≤4
∴
0<≤2∴
h′(x)=-≥->0∴h(x)在[0,4]上單調(diào)增,
∵h(yuǎn)(0)=-
,h(4)=
∴對任意的x∈D,都有|f(x)-g(x)|≤1,
∴函數(shù)f(x)和g(x)在D上為“密切函數(shù)”;
故答案為:①④