已知k∈[-2,2],則k的值使得過A(1,1)可以作兩條直線與圓相切的概率等于________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結(jié)論中正確的是( 。
A、函數(shù)y=f(x)•g(x)的最大值為1
B、函數(shù)y=f(x)•g(x)的對稱中心是(
2
+
π
4
,0),k∈Z
C、當(dāng)x∈[-
π
2
,
π
2
]
時(shí),函數(shù)y=f(x)•g(x)單調(diào)遞增
D、將f(x)的圖象向右平移
π
2
單位后得g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
  非體育迷 體育迷 合計(jì)
     
     
合計(jì)      
(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
P( K2≥k) 0.05 0.01
k 3.841 6.635
Χ2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3-3(k+1)x2+1(x∈R)
(1)若該函數(shù)在x=-1處取得極值,求實(shí)數(shù)k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Pn是把Pn-1Pn+1線段作n等分的分點(diǎn)中最靠近Pn+1的點(diǎn),設(shè)線段P1P2,P2P3,…,PnPn+1,的長度分別為
a1,a2,a3,…,an,其中a1=1.
(1)寫出a2,a3和an的表達(dá)式;
(2)證明a1+a2+a3+…+an<3;
(3)設(shè)點(diǎn)Mn(n,an),在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)y=
k(x-1)2
(k>0
)的圖象上,如果存在,請求出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,x∈R.
(1)若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè)x>0,討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點(diǎn)的個(gè)數(shù);
(3)設(shè)函數(shù)h(x)滿足x2h′(x)+2xh(x)=
f(x)
x
,h(2)=
f(2)
8
,試比較h(e)與
7
8
的大。

查看答案和解析>>

同步練習(xí)冊答案