如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)600到OD,則PD的長為(  )
分析:作DE⊥CB于E,根據(jù)題意先求得∠AOP=60°,∠DOC=60°.利用三角函數(shù)可求DE=
3
2
,EO=
1
2
.根據(jù)勾股定理即可求PD的值.
解答:解:如圖,作DE⊥CB于E.

∵OB=PB=1,
∴OA=1.
又∵PA切⊙O于點A,
則OA⊥AP,
∴∠AOP=60°.
又∵OA繞點O逆時針方向旋轉(zhuǎn)60°,
∴∠DOC=60°.
∴DE=1×sin60°=
3
2
,EO=
1
2

∴PD=
(1+1+
1
2
)
2
+(
3
2
)
2
=
7

故選:D.
點評:本題考點是與圓有關(guān)的比例線段,本題考查求線段的長度,平面幾何中求線段長度一般在三角形中用正弦定理與余弦定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.(不等式選講選做題)函數(shù)y=|x+1|+|x-1|的最小值是
 

B.(幾何證明選講選做題)如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針轉(zhuǎn)60°到OD,則PD的長為
 

C.(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)60° 到OD.
(1)求線段PD的長;
(2)在如圖所示的圖形中是否有長度為
3
的線段?若有,指出該線段;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.若不等式|x-1|+|x-m|<2m的解集為∅,則m的取值范圍為
(-∞,
1
3
]
(-∞,
1
3
]

B.如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)60°到OD,則PD的長為
7
7

C.直線3x-4y-1=0被曲線
x=2cosθ
y=1+2sinθ
(θ為參數(shù))所截得的弦長為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省高三第四次模擬考試理科數(shù)學(xué) 題型:解答題

(.選修4—1:幾何證明選講

       如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)到O     D.

   (1)求線段PD的長;

   (2)在如圖所示的圖形中是否有長度為的線段?若有,指出該線段;若沒有,說明理由.

 

 

查看答案和解析>>

同步練習(xí)冊答案