已知函數(shù)(其中a∈R).
(Ⅰ)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線為,求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
【答案】分析:(I)欲求實(shí)數(shù)a、b的值,利用在x=1處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(II)先求導(dǎo)數(shù)fˊ(x)然后在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區(qū)間為單調(diào)增區(qū)間,fˊ(x)<0的區(qū)間為單調(diào)減區(qū)間.
解答:解:由,可得.….(2分)
(Ⅰ)因?yàn)楹瘮?shù)f(x)在點(diǎn)(1,f(1))處的切線為,得:….(4分)
解得 ….(5分)
(Ⅱ)令f'(x)>0,得x2+2x-a>0…①….(6分)
當(dāng)△=4+4a≤0,即a≤-1時(shí),不等式①在定義域內(nèi)恒成立,所以此時(shí)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1)和(-1,+∞).….(8分)
當(dāng)△=4+4a>0,即a>-1時(shí),不等式①的解為
….(10分)
又因?yàn)閤≠-1,所以此時(shí)函數(shù)f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
.….(12分)
所以,當(dāng)a≤-1時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1)和(-1,+∞);
當(dāng)a>-1時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為..….(13分)
點(diǎn)評:此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會(huì)利用導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,是一道中檔題.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的步驟是:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù)fˊ(x);(3)在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0;(4)確定函數(shù)的單調(diào)區(qū)間.若在函數(shù)式中含字母系數(shù),往往要分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a∈R.
(1)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求f(x)在區(qū)間[2,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省鄭州47中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市西城區(qū)(北區(qū))高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a∈R.
(Ⅰ)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市東城區(qū)高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(理)已知函數(shù),其中a∈R.
(Ⅰ)若x=2是f(x)的極值點(diǎn),求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年北京市西城區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a∈R.
(Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[2,3]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案