設(shè)函數(shù)f(x)=
x2-2x-3, x≤0
-x2, x>0
,若f(a)=-4,則a=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵函數(shù)f(x)=
x2-2x-3, x≤0
-x2, x>0
,f(a)=-4,
∴當(dāng)a≤0時,a2-2a-3=-4,解得a=1,不成立;
當(dāng)a>0時,-a2=-4,解得a=2或a=-2(舍),
∴a=2.
故答案為:2.
點評:本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為3等邊三角形ABC中,點P為線段AB上一點,且
AP
AB
(0≤λ≤1),設(shè)
CA
=a,
CB
=b.
(1)若λ=
1
3
,試用a,b表示
CP
并求|
CP
|;
(2)若
CP
AB
PA
PB
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx+1,g(x)=ax+
a-1
x
,F(xiàn)(X)=f(x)-g(x).
(1)當(dāng)a=2時,求函數(shù)F(x)在區(qū)間[
1
e
,e]上的最大值;
(2)若a≤
1
2
,求函數(shù)F(x)的單調(diào)區(qū)間;
(3)在曲線y=f(x)上任取兩點P(x1,y1),Q(x2,y2),(x1<x2),直線PQ的斜率為k,試探索:kx1,1,kx2 三者的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校組織學(xué)生參加體育二課堂訓(xùn)練,三個項目的人數(shù)分布如下表(每名學(xué)生只能參加一項):
 短跑長跑跳高
男生30328
女生252m
學(xué)生要對著三個項目學(xué)生參加情況進行抽樣調(diào)查,按分層抽樣的方法從三個項目中抽取18人,結(jié)果參加跳高的項目被抽出了6人.
(Ⅰ)求跳高項目中被抽出的6人中有5人是男生的概率;
(Ⅱ)設(shè)跳高項目有X名女生被抽出,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1-lg(x-2)
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2x-3sinx的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記數(shù)列{an}的前n項和為Sn,若不等式an2+
Sn2
n2
≥ma12對任意等差數(shù)列{an}及任意正整數(shù)n都成立,則實數(shù)m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2+x在(0,+∞)上單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐的頂點為P,PA,PB,PC為三條棱,且PA,PB,PC兩兩垂直,又PA=2,PB=3,PC=4,則三棱錐P-ABC的體積是
 

查看答案和解析>>

同步練習(xí)冊答案