已知函數(shù)數(shù)學公式
(1)若f'(-3)=0,求a的值;
(2)若a>1,求函數(shù)發(fā)f(x)的單調(diào)區(qū)間與極值點;
(3)設(shè)函數(shù)g(x)=f'(x)是偶函數(shù),若過點數(shù)學公式可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

解:f′(x)=x2+2ax+2a-1
(1)∵f'(-3)=0,∴9-6a+2a-1=0,
解得:a=2;
(2)f'(x)=(x+1)(x+2a-1),
∵a>1,由f'(x)=(x+1)(x+2a-1)>0
得x<1-2a或x>-1,所以f(x)的單調(diào)增區(qū)間為(-∞,1-2a)和(-1,+∞);
由f'(x)=(x+1)(x+2a-1)<0得1-2a<x<-1,
所以f(x)的單調(diào)減區(qū)間為(1-2a,-1);
且x=1-2a是極大值點,x=-1是極小值點;
(3)∵g(x)=f'(x)是偶函數(shù),
∴a=0
,設(shè)曲線線 過點的切線相切于點P(x0 ),
則切線的斜率 k=x02-1,
∴切線方程為y-()═(x02-1)(x-x0),
∵點A(1,m)在切線上,
∴m-()=(x02-1)(1-x0),
解得m=
令h(x)=,
則h′(x)=-2x2+2x=2x(1-x)=0,解得x=0,x=1當x=0時,
h(x)去極小值-1,當x=1時,h(x)去極大值-
∴實數(shù)m的取值范圍是-1<m<-
分析:(1)求導數(shù)fˊ(x),解方程f'(-3)=0,即可求得結(jié)論;(2)求導數(shù)fˊ(x),根據(jù)a>1,在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0即可求出函數(shù)的單調(diào)區(qū)間和極值點;(3)設(shè)出曲線過點P切線方程的切點坐標,把切點的橫坐標代入到(1)求出的導函數(shù)中即可表示出切線的斜率,根據(jù)切點坐標和表示出的斜率,寫出切線的方程,把P的坐標代入切線方程即可得到關(guān)于切點橫坐標的方程,求出方程的解即可得到切點橫坐標的值,分別代入所設(shè)的切線方程即可;
點評:本題主要考查了利用導數(shù)研究函數(shù)的極值,以及利用導數(shù)研究函數(shù)的單調(diào)性和利用導數(shù)求閉區(qū)間上函數(shù)的最值,以及利用導數(shù)研究曲線上某點的切線方程,考查了分析解決問題的能力和運算能力,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江師范附中高三(上)第一周周考數(shù)學試卷(理科)(9.9)(解析版) 題型:解答題

已知函數(shù)
(1)若f(x)為奇函數(shù),求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江師范附中高三(上)第一周周考數(shù)學試卷(理科)(9.9)(解析版) 題型:解答題

已知函數(shù)
(1)若f(x)為奇函數(shù),求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市蕭山區(qū)三校聯(lián)考高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)若f(x)在x=2時取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)求證:當x>1時,

查看答案和解析>>

科目:高中數(shù)學 來源:2007年江蘇省連云港市東海高級中學高考數(shù)學仿真試卷(解析版) 題型:解答題

已知函數(shù)
(1)若f-1(mx2+mx+1)的定義域為R,求實數(shù)m的取值范圍;
(2)當x∈[-1,1]時,求函數(shù)y=f2(x)-2af(x)+3的最小值g(a).
(3)是否存在實數(shù)m>n>3,使得g(x)的定義域為[n,m],值域為[n2,m2],若存在,求出m、n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市高三9月月考文科數(shù)學試卷 題型:解答題

(13分)已知函數(shù)

(1)若f(x)關(guān)于原點對稱,求a的值;

(2)在(1)下,解關(guān)于x的不等式

 

查看答案和解析>>

同步練習冊答案