10.已知下列選項,其中錯誤的是( 。
①過圓(x-1)2+(y-2)2=4外一點M(3,1),且與圓相切的直線方程為3x-4y-5=0;
②方程Ax2+By2=1(A>0,B>0)表示橢圓方程;
③平面內(nèi)到點F1(0,4),F(xiàn)2(0,-4)距離之差的絕對值等于8的點的軌跡是雙曲線;
④方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(mn>0)表示焦點在x軸上的雙曲線.
A.①②③④B.①②③C.③④D.②④

分析 對4個選項分別進行判斷,即可得出結(jié)論.

解答 解:①過圓(x-1)2+(y-2)2=4外一點M(3,1),且與圓相切的直線方程為3x-4y-5=0或x=3,錯誤;
②方程Ax2+By2=1(A>0,B>0)表示橢圓方程,A=B,表示圓,錯誤;
③平面內(nèi)到點F1(0,4),F(xiàn)2(0,-4)距離之差的絕對值等于8的點的軌跡是射線,錯誤;
④方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(m>0,n>0)表示焦點在x軸上的雙曲線,錯誤.
故選A.

點評 本題考查圓錐曲線,考查學生對圓錐曲線方程、定義的理解,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.若函數(shù)f(x)滿足:在定義域D內(nèi)存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列四個函數(shù):①f(x)=2x;②f(x)=$\frac{1}{x}$;③f(x)=lg(x2+2);④f(x)=cosπx.
其中是“1的飽和函數(shù)”的所有函數(shù)的序號為①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在平面直角坐標系xOy中,圓C的方程為(x-2)2+(y-3)2=36,直線l:y=kx+5與圓C相交于A,B兩點,M為弦AB上一動點,以M為圓心,4為半徑的圓與圓C總有公共點,則實數(shù)k的最小值為(  )
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若關(guān)于x的方程lgx=5-2x的解x0∈(k,k+1),k∈Z,則k=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某研究所計劃利用“神十”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生的收益來決定具體搭載安排,有關(guān)數(shù)據(jù)如下表:
每件產(chǎn)品A每件產(chǎn)品B
研制成本、搭載
費用之和(萬元)
2030計劃最大資金額
300萬元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計收益(萬元)8060
分別用x,y表示搭載新產(chǎn)品A,B的件數(shù).總收益用Z表示
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別搭載新產(chǎn)品A、B各多少件,才能使總預(yù)計收益達到最大?并求出此最大收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x+1)=x+2x2,求f(x)=2x2-3x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出下列結(jié)論:
①在△ABC中,sinA>sinB?a>b;
②常數(shù)數(shù)列既是等差數(shù)列又是等比數(shù)列;
③數(shù)列{an}的通項公式為${a_n}={n^2}-kn+1$,若{an}為遞增數(shù)列,則k∈(-∞,2];
④△ABC的內(nèi)角A,B,C滿足sinA:sinB:sinC=3:5:7,則△ABC為銳角三角形.其中正確結(jié)論的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知盒中有3張分別標有1,2,3的卡片,從中隨機地抽取一張,記下數(shù)字后再放回,再隨機地抽取一張,記下數(shù)字,則兩次抽得的數(shù)字之和為3的倍數(shù)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某校高一年級3個班有10名學生在全國英語能力大賽中獲獎,學生來源人數(shù)如表:
班別高一(1)班高一(2)班高一(3)班
人數(shù)361
若要求從10位同學中選出兩位同學介紹學習經(jīng)驗,設(shè)其中來自高一(1)班的人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望E(ξ).

查看答案和解析>>

同步練習冊答案