9.對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,情況如表.
壽命(h)100~200200~300300~400400~500500~600
個(gè)  數(shù)2030804030
(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)從頻率分布直方圖估計(jì)出電子元件壽命的眾數(shù)、中位數(shù)分別是多少?

分析 (1)根據(jù)題意,列出樣本頻率分布表、畫出頻率分布直方圖即可;
(2)根據(jù)頻率分布直方圖,計(jì)算眾數(shù)與中位數(shù)的值.

解答 解:(1)根據(jù)題意,列出樣本頻率分布表如下;

壽命(h)頻  數(shù)頻  率
100~200200.10
200~300300.15
300~400800.40
400~500400.20
500~600300.15
合  計(jì)2001.00
------------(4分)
畫出頻率分布直方圖,如下;
--(9分)
(2)從頻率分布直方圖可以看出電子元件壽命的眾數(shù)是$\frac{300+400}{2}$=350;--(10分)
中位數(shù)為:$200+\frac{0.5-0.001×100-0.0015×100}{0.004}=200+\frac{0.25}{0.0004}=262.5$.-(12分)

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某班同學(xué)參加社會(huì)實(shí)踐活動(dòng),對(duì)本市25~55歲年齡段的人群進(jìn)行某項(xiàng)隨機(jī)調(diào)查,得到各年齡段被調(diào)查人數(shù)的頻率分布直方圖如圖(部分有缺損):
(1)補(bǔ)全頻率分布直方圖(需寫出計(jì)算過(guò)程);
(2)現(xiàn)從[40,55)歲年齡段樣本中采用分層抽樣方法抽取6人分成A、B兩個(gè)小組(每組3人)參加戶外體驗(yàn)活動(dòng),記A組中年齡在[40,45)歲的人數(shù)為ξ,
求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若$\frac{1+sinx}{cosx}$=2,則$\frac{1-sinx}{cosx}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,那么a>b是sinA>sinB的(  )條件.
A.充分不必要B.必要不充分C.充分且必要D.無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,在下列結(jié)論中:
①b2-4ac>0;
②abc>0;
③b=-2a;
④9a+3b+c<0,
正確結(jié)論的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若集合M={y|y=3x},N={x|y=$\sqrt{1-3x}$},則M∩N=( 。
A.[0,$\frac{1}{3}$]B.(0,$\frac{1}{3}$]C.(0,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.為了得到函數(shù)y=sin2x-cos2x的圖象,可以將函數(shù)y=$\sqrt{2}$cos2x的圖象(  )
A.向左平行移動(dòng)$\frac{3π}{8}$個(gè)單位B.向右平行移動(dòng)$\frac{3π}{8}$個(gè)單位
C.向左平行移動(dòng)$\frac{3π}{4}$個(gè)單位D.向右平行移動(dòng)$\frac{3π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.集合A={x|3≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=$\frac{{3{x^2}+mx}}{e^x}$(m∈R).
(1)若f(x)在x=0處取得極值,求實(shí)數(shù)m的值,并確定f(0)是極大值還是極小值;
(2)若f(x)在[3,+∞)上單調(diào)遞減,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案