已知i為虛數(shù)單位,復(fù)數(shù)z=(2-i)(1+i)2的實(shí)部為a,虛部為b,則logab=( )
A.0
B.l
C.2
D.3
【答案】分析:利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘法化簡(jiǎn)復(fù)數(shù)z為 2+4i,可得a=2,b=4,從而可得 logab 的值.
解答:解:∵復(fù)數(shù)z=(2-i)(1+i)2 =(2-i)•2i=2+4i,復(fù)數(shù)z實(shí)部為a,虛部為b,
∴a=2,b=4,
∴l(xiāng)ogab=log24=2,
故選C.
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的基本概念,兩個(gè)復(fù)數(shù)代數(shù)形式的乘法,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知i為虛數(shù)單位,a為實(shí)數(shù),復(fù)數(shù)z=(a-2i)(1+i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為M,則“a=1”是“點(diǎn)M在第四象限”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,a為實(shí)數(shù),復(fù)數(shù)z=(1-2i)(a+i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為M,則a>
1
2
“”是“點(diǎn)M在第四象限”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=
1+2i
1-i
,則復(fù)數(shù)z在復(fù)平面上的對(duì)應(yīng)點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則
i
1+i
所對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=
1-3i
2+i
,則復(fù)數(shù)z在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案