若函數(shù)f(x)=logax在[2,4]上的最大值與最小值之差為2,則a=
 
分析:本題考查的知識點(diǎn)是對數(shù)函數(shù)的性質(zhì),觀察到題目中的對數(shù)函數(shù)底數(shù)不確定,故要對底數(shù)進(jìn)行分類討論,然后根據(jù)單調(diào)性進(jìn)行判斷函數(shù)在[2,4]上的最大值與最小值,根據(jù)最大值與最小值之差為2構(gòu)造方程即可求解.
解答:解:當(dāng)0<a<1時,f(x)=logax在[2,4]上單調(diào)遞減
故函數(shù)的最大值為f(2),最小值為f(4)
則f(2)-f(4)=loga2-loga4=loga
1
2
=2,解得a=
2
2

當(dāng)a>1時,f(x)=logax在[2,4]上單調(diào)遞增
故函數(shù)的最大值為f(4),最小值為f(2)
則f(4)-f(2)=loga4-loga2=loga2=2,解得a=
2

故答案為:
2
2
2
點(diǎn)評:在處理指數(shù)函數(shù)和對數(shù)函數(shù)問題時,若對數(shù)未知,一般情況下要對底數(shù)進(jìn)行分類討論,分為0<a<1,a>1兩種情況,然后在每種情況對問題進(jìn)行解答,然后再將結(jié)論綜合,得到最終的結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:陜西省漢中地區(qū)2007-2008學(xué)年度高三數(shù)學(xué)第一學(xué)期期中考試試卷(理科) 題型:022

若函數(shù)f(x)=的定義域?yàn)镸,g(x)=lo(2+x=6x2)的單調(diào)遞減區(qū)間是開區(qū)間N,設(shè)全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:汨羅市第三中學(xué)2008屆高三第二次月考2、數(shù)學(xué) 題型:044

函數(shù)f(x)=lo(x2-2ax+3).

(1)若f(x)的定義域?yàn)镽,值域?yàn)?-∞,-1],試求實(shí)數(shù)a的值;

(2)若f(x)在(-∞,1]內(nèi)是增函數(shù),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:蘇教版江蘇省揚(yáng)州市2007-2008學(xué)年度五校聯(lián)考高三數(shù)學(xué)試題 題型:044

已知函數(shù)(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調(diào)減函數(shù),求實(shí)數(shù)m的取值范圍;

(2)設(shè)g(x)=f(x)+lnx,當(dāng)m≥-2時,求g(x)在上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省莒南一中2008-2009學(xué)年度高三第一學(xué)期學(xué)業(yè)水平階段性測評數(shù)學(xué)文 題型:044

設(shè)f(x)=lo的奇函數(shù),a為常數(shù),

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;

(Ⅲ)若對于[3,4]上的每一個x的值,不等式f(x)>()x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案