如圖,在四棱錐中,底面是矩形.已知.

(Ⅰ)證明平面;

(Ⅱ)求異面直線所成的角的大。

(Ⅲ)求二面角的大小.

解:(Ⅰ)證明:在中,由題設可得

于是.在矩形中,.又,

所以平面.

(Ⅱ)證明:由題設,,

所以(或其補角)是異面直線所成的角.

中,由余弦定理得

由(Ⅰ)知平面,平面,

所以,因而,于是是直角三角形,故

所以異面直線所成的角的大小為.

(Ⅲ)解:過點P做H,過點H于E,連結(jié)PE

因為平面,平面,所以.又

因而平面,故HEPE在平面ABCD內(nèi)的射影.由三垂線定理可知,

,從而是二面角的平面角。

由題設可得,

于是在中,

所以二面角的大小為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010-2011年廣西省桂林中學高二下學期期中考試數(shù)學 題型:解答題

((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知


(1)證明平面;
(2)求異面直線所成的角的大小;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建省三明市高三第一學期測試理科數(shù)學試卷 題型:解答題

如圖,在四棱錐中,底面是菱形,,,平面,的中點,的中點.    

(Ⅰ) 求證:∥平面;

(Ⅱ)求證:平面⊥平面

(Ⅲ)求平面與平面所成的銳二面角的大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆上海市高二年級期終考試數(shù)學 題型:解答題

(本題滿分16分)

如圖,在四棱錐中,底面是矩形.已知

(1)證明平面;

(2)求異面直線所成的角的大。

(3)求二面角的大。

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高二下學期期末考試附加卷數(shù)學卷 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)棱,中點,作

(1)求PF:FB的值

(2)求平面與平面所成的銳二面角的正弦值。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學理 題型:解答題

(本小題滿分14分)

如圖,在四棱錐中,底面為平行四邊形,平面在棱上.

(Ⅰ)當時,求證平面

(Ⅱ)當二面角的大小為時,求直線與平面所成角的正弦值.

 

 

查看答案和解析>>

同步練習冊答案