若2弧度的圓心角所對(duì)的弧長(zhǎng)為4cm,則這個(gè)圓心角所夾的扇形的面積是
 
分析:先求出扇形的弧長(zhǎng),利用周長(zhǎng)求半徑,代入面積公式s=
1
2
αr2進(jìn)行計(jì)算.
解答:解:弧度是2的圓心角所對(duì)的弧長(zhǎng)為4,所以圓的半徑為:2,
所以扇形的面積為:
1
2
×4×2
=4cm2;
故答案為4cm2
點(diǎn)評(píng):本題是基礎(chǔ)題,考查扇形面積的求法,注意題意的正確理解,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2弧度的圓心角所對(duì)的弧長(zhǎng)為4cm,則這個(gè)圓心角所夾的扇形的面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2弧度的圓心角所對(duì)的弧長(zhǎng)為2cm,則這個(gè)圓心角所夾的扇形的面積是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)結(jié)論:
①若集合A={x∈R|0≤x≤1},B={x∈N|lgx<1},則A∩B={1};
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3
;
③若△ABC的內(nèi)角A滿(mǎn)足sinAcosA=
1
3
,則sinA+cosA=±
15
3

④函數(shù)f(x)=|sinx|的零點(diǎn)為kπ(k∈Z).
⑤若2弧度的圓心角所對(duì)的弧長(zhǎng)為4cm,則這個(gè)圓心角所在扇形的面積為2cm2
其中,結(jié)論正確的是
①④
①④
.(將所有正確結(jié)論的序號(hào)都寫(xiě)上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2弧度的圓心角所對(duì)的弧長(zhǎng)為4cm,則這個(gè)圓心角所夾的扇形的面積是( 。
A、4cm2B、2cm2C、4πcm2D、2πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2弧度的圓心角所對(duì)的弦長(zhǎng)為4,則這個(gè)圓心角所對(duì)的弧長(zhǎng)為(  )
A、2sin
1
2
B、
4
sin1
C、4cos
1
2
D、
2
cos1

查看答案和解析>>

同步練習(xí)冊(cè)答案