設(shè)雙曲線
y2
m
-
x2
2
=1
的一個焦點為(0,-2),則雙曲線的離心率為(  )
A.
2
B.2C.
6
D.2
2
由題意可得  m+2=4,∴m=2,故離心率等于
c
a
=
m+2
m
=
2
,
故選 A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
2
+
y2
m
=1
和雙曲線
y2
3
-x2=1
的公共焦點分別為F1、F2,P為這兩條曲線的一個交點,則|
PF1
||
PF2
|
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是雙曲線x2-
y2
m
=1的左右焦點,過點F2作與x軸垂直的直線和雙曲線的一個交點為A,且滿足|
AF2
|=|
F1F2
|,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂一模)設(shè)橢圓
x2
2
+
y2
m
=1
和雙曲線
y2
3
-x2=1
的公共焦點分別為F1、F2,P為這兩條曲線的一個交點,則|PF1|•|PF2|的值為
(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:方程x2-mx+
1
4
=0
沒有實數(shù)根.命題q:方程
x2
m-2
+
y2
m
=1
表示的曲線是雙曲線.若命題p∧q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓
x2
2
+
y2
m
=1
和雙曲線
y2
3
-x2=1
的公共焦點分別為F1、F2,P為這兩條曲線的一個交點,則|
PF1
||
PF2
|
=______.

查看答案和解析>>

同步練習(xí)冊答案