17.電動自行車的耗電量y與速度x的關(guān)系為y=$\frac{1}{3}{x^3}-\frac{39}{2}{x^2}$-40x(x>0),為使耗電量最小,則速度應(yīng)為( 。
A.45B.40C.35D.30

分析 欲求使耗電量最小,則其速度應(yīng)定為多少,即求出函數(shù)的最小值即可,對函數(shù)求導,利用導數(shù)求研究函數(shù)的單調(diào)性,判斷出最小值位置,代入算出結(jié)果.

解答 解:由題設(shè)知y'=x2-39x-40,
令y'>0,解得x>40,或x<-1,
故函數(shù)y=$\frac{1}{3}{x^3}-\frac{39}{2}{x^2}$-40x(x>0),在[40,+∞)上增,在(0,40]上減,
當x=40,y取得最小值.
由此得為使耗電量最小,則其速度應(yīng)定為40;
故選:B.

點評 考查用導數(shù)研究函數(shù)的單調(diào)性求最值,本題是導數(shù)一章中最基本的應(yīng)用題型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$)+1
(1)求函數(shù)f(x)的最小正周期,并寫出的單調(diào)遞增區(qū)間
(2)在△ABC,角A,B,C的對邊分別為a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x2+alnx.
(1)當a=-2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)+$\frac{2}{x}$在[1,3]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.我市為了了解高中生作文成績與課外閱讀之間的關(guān)系,隨機抽取了我市某高中50名學生,通過問卷調(diào)查得到了以下數(shù)據(jù),數(shù)據(jù)如表:
 作文成績優(yōu)秀  作文成績一般合計 
 閱讀量大 18 9 
 閱讀量少 815  
 合計   
(1)請完善表中所缺的有關(guān)數(shù)據(jù);
(2)試通過計算說明在犯錯誤的概率不超過多少的前提下認為“課外閱讀大與作文成績優(yōu)秀”有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R).
(Ⅰ)若f(x)在區(qū)間(-1,1)內(nèi)為減函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)對于實數(shù)a的不同取值,試討論y=f(x)在(-1,1)內(nèi)的極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知a∈R,函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx-3x,g(x)=-x2+8x,且x=1是函數(shù)f(x)的極大值點.
(1)求a的值.
(2)如果函數(shù)y=f(x)和函數(shù)y=g(x)在區(qū)間(b,b+1)上均為增函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下面是一個2×2列聯(lián)表
y1y2總計
x1*1640
x2ab*
總計28*70
則表中a、b處的值分別為( 。
A.14,16B.4,26C.4,24D.26,4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1,過右焦點F的直線l與橢圓C交于A,B兩點,當直線l的斜率為1時,坐標原點O到直線l的距離為$\frac{\sqrt{2}}{2}$.
(1)求橢圓的離心率;
(2)若直線可以繞點F轉(zhuǎn)動,動點P在橢圓上,當$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$時,求四邊形OAPB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,斜三棱柱ABC-A1B1C1的側(cè)面AA1C1C是菱形,側(cè)面ABB1A1⊥側(cè)面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為$\sqrt{3}$,且∠AA1C1為銳角.
(I) 求證:AA1⊥BC1;
(Ⅱ)求三棱錐A1-ABC1的體積.

查看答案和解析>>

同步練習冊答案