已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.
(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;
(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程y=g(x);
(3)在(2)的條件下,求F(x)=f(x)+tg(x)(t為常數(shù))在[2,+∞)上單調(diào)時(shí),t的取值范圍.
【答案】分析:(1)由已知可得斜率函數(shù)為f′(x)=3x2-3,進(jìn)而求出所過點(diǎn)切線的斜率,代入點(diǎn)斜式公式即可.
(2)設(shè)另一切點(diǎn)為(x,y),求出該點(diǎn)切線方程,再由條件列方程計(jì)算.
(3)由(2)得g(x)=-x+,則F(x)=x3-3x+t(-x+),求其導(dǎo)數(shù),再分類討論:當(dāng)t+3≤0時(shí),F(xiàn)(x)≥0在[2,+∞)上恒成立,F(xiàn)(x)在[2,+∞)上是增函數(shù);當(dāng)t+3>0時(shí),求得當(dāng)t≤4時(shí),F(xiàn)(x)在[2,+∞)上是增函數(shù),從而求出t的取值范圍.
解答:解:(1)由f(x)=x3-3x得,f′(x)=3x2-3,
過點(diǎn)P且以P(1,-2)為切點(diǎn)的直線的斜率f′(1)=0,
∴所求直線方程為y=-2.
(2)設(shè)過P(1,-2)的直線l與y=f(x)切于另一點(diǎn)(x,y),
則f′(x)=3x2-3.
又直線過(x,y),P(1,-2),
故其斜率可表示為=,
=3x2-3,
即x3-3x+2=3(x2-1)•(x-1),
解得x=1(舍)或x=-
故所求直線的斜率為k=3×(-1)=-,
∴y-(-2)=-(x-1),
即9x+4y-1=0.
(3)由(2)得g(x)=-x+,則F(x)=x3-3x+t(-x+),
∴F′(x)=3x3-(t+3),
當(dāng)t+3≤0時(shí),F(xiàn)(x)≥0在[2,+∞)上恒成立,F(xiàn)(x)在[2,+∞)上是增函數(shù);
當(dāng)t+3>0時(shí),由F′(x)=0得極值點(diǎn):x1=-,x2=,
,即,即t≤4時(shí),F(xiàn)(x)在[2,+∞)上是增函數(shù),
∴t的取值范圍:t≤4.
點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程′、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案