19.如圖,在直三棱柱ABC-A1B1C1中,底面為等邊三角形,D為AC的中點,AA1=AB=6.
(Ⅰ)求證:直線AB1∥平面BC1D;
(Ⅱ)求證:平面BC1D⊥平面ACC1A;
(Ⅲ)求三棱錐C-BC1D的體積.

分析 (Ⅰ)連接B1C交BC1于點O,連接OD,則點O為B1C的中點,證明:A1B∥OD,即可證明直線AB1∥平面BC1D;
(Ⅱ)證明BD⊥平面ACC1A1,即可證明:平面BC1D⊥平面ACC1A;
(Ⅲ)利用${V}_{C-B{C}_{1}D}$=${V}_{{C}_{1}-BCD}$,求三棱錐C-BC1D的體積.

解答 (Ⅰ)證明:連接B1C交BC1于點O,連接OD,則點O為B1C的中點.
∵D為AC中點,得DO為△AB1C中位線,
∴A1B∥OD.
∵OD?平面AB1C,A1B?平面AB1C,
∴直線AB1∥平面BC1D;…(4分)
(Ⅱ) 證明:∵AA1⊥底面ABC,∴AA1⊥BD,
∵底面ABC正三角形,D是AC的中點,
∴BD⊥AC
∵AA1∩AC=A,∴BD⊥平面ACC1A1,
∵BD?平面BC1D,∴平面 BC1D⊥平面ACC1A;…(8分)
(Ⅲ)解:由(Ⅱ)知,△ABC中,BD⊥AC,BD=BCsin60°=3$\sqrt{3}$
∴S△BCD=$\frac{1}{2}×3×3\sqrt{3}$=$\frac{9\sqrt{3}}{2}$,
∴${V}_{C-B{C}_{1}D}$=${V}_{{C}_{1}-BCD}$=$\frac{1}{3}•\frac{9\sqrt{3}}{2}•6$=9$\sqrt{3}$. …(12分)

點評 本題考查線面平行,平面與平面垂足,考查三棱錐體積的計算,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\frac{1}{x}+\frac{2}{y}$=1(x>0,y>0),求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,已知點A(-1,0)、B(1,0),動點C滿足條件:△ABC的周長為2+2$\sqrt{2}$.記動點C的軌跡為曲線了.
(Ⅰ)求曲線T的方程;
(Ⅱ)已知點M( $\sqrt{2}$,0),N(0,1),是否存在經(jīng)過點(0,$\sqrt{2}$)且斜率為k的直線l與曲線T有兩個不同的交點P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$與$\overrightarrow{MN}$共線?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知平面上的動點P(x,y)及兩定點M(-2,0)、N(2,0),直線PM、PN的斜率之積為定值$-\frac{3}{4}$,設動點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設Q(x0,y0)(y0>0)是曲線C上一動點,過Q作兩條直線l1,l2分別交曲線C于A,B兩點,直線l1與l2的斜率互為相反數(shù).試問:直線AB的斜率與曲線C在Q點處的切線的斜率之和是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知點B是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點,F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點,直線BF1,BF2與橢圓分別交于E,F(xiàn)兩點,△BEF為等邊三角形.
(1)求橢圓C的離心率;
(2)已知點(1,$\frac{3}{2}$)在橢圓C上,且直線l:y=kx+m與橢圓C交于M、N兩點,若直線F1M,F(xiàn)2N的傾斜角分別為α,β,且α+β=$\frac{π}{2}$,求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.數(shù)列{an}滿足a1=$\frac{1}{2}$,a1+a2+…+an=n2an,則數(shù)列{an}的通項公式為$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{\frac{2}{n(n+1)},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{x+1}{{e}^{x}}$
(Ⅰ)求函數(shù)f(x)的極大值;
(Ⅱ)設定義在[0,1]上的函數(shù)g(x)=xf(x)+tf′(x)+e-x(t∈R)的最大值為M,最小值為N,且M>2N,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知集合A={x|x2-3x+2=0,x∈R},B={x|x2-ax+2=0,x∈R},若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在四面體ABCD中,棱長AB=$\sqrt{5}$,其余棱長都是$\sqrt{3}$,求這個四面體的體積以及其外接球的半徑.

查看答案和解析>>

同步練習冊答案