【題目】已知圓Mx2+y-22=1,Qx軸上的動點(diǎn),QA,QB分別切圓MA,B兩點(diǎn)。

1)若Q1,0),求切線QA,QB的方程;

2)求四邊形QAMB面積的最小值;

3)若|AB|=,求直線MQ的方程。

【答案】(1);(2);(3)

【解析】試題分析:(1)討論直線的斜率是否存在,根據(jù)圓心到直線的距離等于半徑求出直線的斜率;
(2)根據(jù)面積公式可知MQ最小時,面積最小,從而得出結(jié)論;
(3)根據(jù)切線的性質(zhì)列方程取出MQ的值,從而得出Q點(diǎn)坐標(biāo),進(jìn)而求出直線MQ的方程.

試題解析:

1)設(shè)過點(diǎn)Q的圓M的切線方程為x=my+1,

則圓心M到切線的距離為1,

所以,所以m=0,

所以QA,QB的方程分別為3x+4y-3=0x=1

2)因為MAAQ,所以S四邊形MAQB=|MA|·|QA|=|QA|=

所以四邊形QAMB面積的最小值為。

3)設(shè)ABMQ交于P,則MPAB,MBBQ

所以|MP|=。

RtMBQ中,|MB|2=|MP||MQ|,

1=|MQ|,所以|MQ|=3,所以x2+y-22=9。

設(shè)Qx,0),則x2+22=9,所以x=±,所以Q±,0),

所以MQ的方程為2x+y+2=02x-y-2=0。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)yf(x)為區(qū)間[0,1]上的連續(xù)函數(shù),且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計算積分.先產(chǎn)生兩組(每組N)區(qū)間[0,1]上的均勻隨機(jī)數(shù)x1,x2,xNy1,y2,,yN,由此得到N個點(diǎn)(xi,yi)(i1,2,,N).再數(shù)出其中滿足yi≤f(xi)(i1,2,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得積分的近似值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .

1)數(shù)列的通項公式;

2)設(shè),求數(shù)列項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項和滿足,,

1)求數(shù)列{}{}的通項公式:

2)設(shè)為數(shù)列{}的前項和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過P4,-2),Q-1,3)兩點(diǎn),且圓心在x軸上。

1)求直線PQ的方程;

2)圓C的方程;

3)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“酒后駕車”和“醉酒駕車”,其檢測標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量Q(簡稱血酒含量,單位是毫克/100毫升),當(dāng)20≤Q≤80時,為酒后駕車;當(dāng)Q>80時,為醉酒駕車.某市交通管理部門于某天晚上8點(diǎn)至11點(diǎn)設(shè)點(diǎn)進(jìn)行一次攔查行動,共依法查出了60名飲酒后違法駕駛機(jī)動車者,如圖為這60名駕駛員抽血檢測后所得結(jié)果畫出的頻率分布直方圖(其中Q≥140的人數(shù)計入120≤Q<140人數(shù)之內(nèi)).

(1)求此次攔查中醉酒駕車的人數(shù);

(2)從違法駕車的60人中按酒后駕車和醉酒駕車?yán)梅謱映闃映槿?人做樣本進(jìn)行研究,再從抽取的8人中任取3人,求3人中含有醉酒駕車人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 為正三角形,平面平面, , .

(Ⅰ)求證:平面平面;

(Ⅱ)求三棱錐的體積;

(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,請確定點(diǎn)的位置并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年一交警統(tǒng)計了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

車速

事故次數(shù)

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時,可能發(fā)生的交通事故次數(shù).

(參考數(shù)據(jù):

[參考公式:]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校高三畢業(yè)生報考體育專業(yè)學(xué)生的體重(單位:千克)情況,將他們的體重數(shù)據(jù)整理后得到如下頻率分布直方圖,已知圖中從左至右前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

(Ⅰ)求該校報考體育專業(yè)學(xué)生的總?cè)藬?shù)

(Ⅱ)已知A, 是該校報考體育專業(yè)的兩名學(xué)生,A的體重小于55千克, 的體重不小于70千克,現(xiàn)從該校報考體育專業(yè)的學(xué)生中按分層抽樣分別抽取體重小于55千克和不小于70千克的學(xué)生共6名,然后再從這6人中抽取體重小于55千克學(xué)生1人,體重不小于70千克的學(xué)生2人組成3人訓(xùn)練組,求A不在訓(xùn)練組且在訓(xùn)練組的概率.

查看答案和解析>>

同步練習(xí)冊答案