(滿分13分)

     以知橢圓的兩個焦點分別為,過點的直

線與橢圓相交與兩點,且。

(1)求橢圓的離心率;w.w.w.k.s.5.u.c.o.m   

(2)求直線AB的斜率;w.w.w.k.s.5.u.c.o.m   

(3)設(shè)點C與點A關(guān)于坐標(biāo)原點對稱,直線上有一點的外接圓上,求 的值

解析:(I)由//,得,從而

  整理,得,故離心率

(II)由(I)得,所以橢圓的方程可寫為

  設(shè)直線AB的方程為,即

 由已知設(shè),則它們的坐標(biāo)滿足方程組

消去y整理,得.

依題意,

而                 ①

                

由題設(shè)知,點B為線段AE的中點,所以

                       ③

聯(lián)立①③解得,

代入②中,解得.

(III)解法一:由(II)

當(dāng)時,得,由已知得.

線段的垂直平分線l的方程為直線l與x軸

的交點外接圓的圓心,因此外接圓的方程為.

直線的方程為,于是點H(m,n)的坐標(biāo)滿足方程組

  , 由解得

當(dāng)時,同理可得

解法二:由(II)可知

當(dāng)時,得,由已知得

由橢圓的對稱性可知B,,C三點共線,因為點H(m,n)在的外接圓上,

,所以四邊形為等腰梯形.

      由直線的方程為,知點H的坐標(biāo)為.

因為,所以,解得m=c(舍),或.

,所以

當(dāng)時同理可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009福建卷理)(本小題滿分13分)

已知A,B 分別為曲線C: +=1(y0,a>0)與x軸

的左、右兩個交點,直線過點B,且與軸垂直,S為

異于點B的一點,連結(jié)AS交曲線C于點T.

(1)若曲線C為半圓,點T為圓弧的三等分點,試求出點S的坐標(biāo);

(II)如圖,點M是以SB為直徑的圓與線段TB的交點,試問:是否存在,使得O,M,S三點共線?若存在,求出a的值,若不存在,請說明理由。                                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.

(1)求橢圓C1的方程;

(ll)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三12月周考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分13分)已知橢圓C的中心在圓點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點,M是橢圓短軸的一個端點,過F1的直線與橢圓交于A,B兩點,的面積為4,的周長為(I)求橢圓C的方程;(II)設(shè)點Q的坐標(biāo)為(1,0),是否存在橢圓上的點P及以Q為圓心的一個圓,使得該圓與直線PF1,PF2都相切,若存在,求出P點坐標(biāo)及圓的方程;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市高三上學(xué)期第四次月考文科數(shù)學(xué)卷 題型:解答題

(本題滿分13分)

    已知三點、

(Ⅰ)求以為焦點且過點P的橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)點、、關(guān)于直線的對稱點分別為、,求以為焦點且過點的雙曲線的標(biāo)準(zhǔn)方程

 

查看答案和解析>>

同步練習(xí)冊答案