A. | x=$\frac{π}{24}$ | B. | x=$\frac{5π}{12}$ | C. | x=$\frac{π}{2}$ | D. | x=$\frac{π}{12}$ |
分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可得得函數(shù)圖象對(duì)應(yīng)的函數(shù)解析式為y=g(x)=2sin(4x+$\frac{π}{6}$),再利用正弦函數(shù)的圖象的對(duì)稱性求得所得函數(shù)圖象的一條對(duì)稱軸方程.
解答 解:函數(shù)f(x)=2sin(2x+$\frac{π}{6}$),
將f(x)圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半之后成為
函數(shù)y=g(x)=2sin(4x+$\frac{π}{6}$).
令4x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,可解得函數(shù)對(duì)稱軸方程為:x=$\frac{1}{4}$kπ+$\frac{π}{12}$,k∈Z,
當(dāng)k=0時(shí),x=$\frac{π}{12}$是函數(shù)的一條對(duì)稱軸.
故選:D.
點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,$\frac{8}{3}$) | B. | ($\frac{2}{3}$,2) | C. | (2,$\frac{10}{3}$) | D. | ($\frac{4}{3}$,$\frac{8}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|0≤x≤1} | C. | {x|-1≤x<1} | D. | {x|0≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com