【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)當(dāng)a>1時(shí),求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅱ)若函數(shù)y=|f(x)﹣t|﹣1有三個(gè)零點(diǎn),求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,試求a的取值范圍.
【答案】解:(Ⅰ)∵函數(shù)f(x)=ax+x2﹣xlna,∴f′(x)=axlna+2x﹣lna=2x+(ax﹣1)lna,
由于a>1,故當(dāng)x∈(0,+∞)時(shí),lna>0,ax﹣1>0,所以f′(x)>0,
故函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
(Ⅱ)當(dāng)a>0,a≠1時(shí),因?yàn)閒′(0)=0,且f(x)在(0,+∞)上單調(diào)遞增,
故f′(x)=0有唯一解x=0.
所以x,f′(x),f(x)的變化情況如下表所示:
又函數(shù)y=|f(x)﹣t|﹣1有三個(gè)零點(diǎn),所以方程f(x)=t±1有三個(gè)根,
即y=f(x)的圖象與兩條平行于x軸的兩條直線y=t±1共有三個(gè)交點(diǎn).
不妨取a>1,y=f(x)在(﹣∞,0)遞減,在(0,+∞)遞增,極小值f(0)=1也是最小值,
當(dāng)x→±∞時(shí),f(x)→+∞.
∵t﹣1<t+1,∴f(x)=t+1有兩個(gè)根,f(x)=t﹣1只有一個(gè)根.
∴t﹣1=fmin(x)=f(0)=1,∴t=2.
(Ⅲ)因?yàn)榇嬖趚1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,
所以當(dāng)x∈[﹣1,1]時(shí),|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,
由(Ⅱ)知,f(x)在[﹣1,0]上遞減,在[0,1]上遞增,
所以當(dāng)x∈[﹣1,1]時(shí),(f(x))min=f(0)=1,
(f(x))max=max{f(﹣1),f(1)},
而 ,
記 ,因?yàn)? (當(dāng)t=1時(shí)取等號(hào)),
所以 在t∈(0,+∞)上單調(diào)遞增,而g(1)=0,
所以當(dāng)t>1時(shí),g(t)>0;當(dāng)0<t<1時(shí),g(t)<0,
也就是當(dāng)a>1時(shí),f(1)>f(﹣1),當(dāng)0<a<1時(shí),f(1)<f(﹣1).
綜合可得,①當(dāng)a>1時(shí),由f(1)﹣f(0)≥e﹣1,可得a﹣lna≥e﹣1,求得a≥e.
②當(dāng)0<a<1時(shí),由 ,
綜上知,所求a的取值范圍為(0, ]∪[e,+∞)
【解析】(Ⅰ)證明a>1時(shí)函數(shù)的導(dǎo)數(shù)大于0.(Ⅱ)先判斷函數(shù)f(x)的極小值,再由y=|f(x)﹣t|﹣1有三個(gè)零點(diǎn),所以方程f(x)=t±1有三個(gè)根,根據(jù)t﹣1應(yīng)是f(x)的極小值,解出t.(Ⅲ)f(x)的最大值減去f(x)的最小值大于或等于e﹣1,由單調(diào)性知,f(x)的最大值是f(1)或f(﹣1),最小值f(0)=1,由f(1)﹣f(﹣1)的單調(diào)性,判斷f(1)與f(﹣1)的大小關(guān)系,再由f(x)的最大值減去最小值f(0)大于或等于e﹣1求出a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圓x2+y2=9上任取一點(diǎn)P,過(guò)點(diǎn)P作y軸的垂線段PD,D為垂足,當(dāng)P為圓與y軸交點(diǎn)時(shí),P與D重合,動(dòng)點(diǎn)M滿足 =2 ;
(1)求點(diǎn)M的軌跡C的方程;
(2)拋物線C′的頂點(diǎn)在坐標(biāo)原點(diǎn),并以曲線C在y軸正半軸上的頂點(diǎn)為焦點(diǎn),直線y=x+3與拋物線C′交于A、B兩點(diǎn),求線段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)在 上的最大值與最小值;
(2)已知 ,x0∈( , ),求cos4x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+3x2﹣9x+m
(1)求函數(shù)f(x)=x3+3x2﹣9x+m的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最大值12,求函數(shù)f(x)在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司研發(fā)出一款產(chǎn)品,批量生產(chǎn)前先在某城市銷售30天進(jìn)行市場(chǎng)調(diào)查.調(diào)查結(jié)果發(fā)現(xiàn):日銷量與天數(shù)的對(duì)應(yīng)關(guān)系服從圖①所示的函數(shù)關(guān)系:每件產(chǎn)品的銷售利潤(rùn)與天數(shù)的對(duì)應(yīng)關(guān)系服從圖②所示的函數(shù)關(guān)系.圖①由拋物線的一部分(為拋物線頂點(diǎn))和線段組成.
(Ⅰ)設(shè)該產(chǎn)品的日銷售利潤(rùn) ,分別求出, , 的解析式,
(Ⅱ)若在30天的銷售中,日銷售利潤(rùn)至少有一天超過(guò)8500元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l過(guò)P(1,2),且A(2,3),B(4,﹣5)到l的距離相等,則直線l的方程是( )
A.4x+y﹣6=0
B.x+4y﹣6=0
C.3x+2y﹣7=0或4x+y﹣6=0
D.2x+3y﹣7=0或x+4y﹣6=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)且.
(1)若函數(shù)區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù), 為自然對(duì)數(shù)的底數(shù).若存在,使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;
(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com