【題目】已知橢圓的一個焦點與上下頂點構(gòu)成直角三角形,以橢圓E的長軸為直徑的圓與直線相切.

(Ⅰ)求橢圓E的標準方程;

(Ⅱ)為橢圓上不同的三點,為坐標原點,若,試問:的面積是否為定值?若是,請求出定值;若不是,請說明理由.

【答案】(Ⅰ)(Ⅱ)是定值,定值為

【解析】

(Ⅰ)根據(jù)題意利用圓心到直線的距離與半徑相等列出關(guān)于的關(guān)系,再根據(jù)一個焦點與上下頂點構(gòu)成直角三角形可得,再聯(lián)立求解即可.

(Ⅱ)分當斜率不存在與存在兩種情況.當斜率存在時設(shè)直線,再聯(lián)立方程寫出韋達定理,再根據(jù)得出關(guān)于,的關(guān)系,代入化簡可得,再求出面積的表達式,代入化簡證明即可.

(Ⅰ)由題意知,

解得.則橢圓C的方程是:

(Ⅱ)①當斜率不存在時,不妨設(shè),,

②設(shè)

設(shè),,,.

,代入,化簡可得

原點的距離,

綜上:的面積為定值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為。

1)求、的值;

2)如果當,且時, ,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題px[1,2],log2x+2)<2m;命題q:關(guān)于x的方程x2x+m20有兩個不同的實數(shù)根.

1)若(¬p)∧q為真命題,求實數(shù)m的取值范圍;

2)若pq為真命題,pq為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,點是拋物線上一點,且滿足.

1)求的值;

2)設(shè)是拋物線上不與重合的兩個動點,記直線、的準線的交點分別為、,若,問直線是否過定點?若是,則求出該定點坐標,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項是首項為的等差數(shù)列,偶數(shù)項是首項為的等比數(shù)列.數(shù)列項和為,且滿足,

1)求數(shù)列的通項公式;

2)若,求正整數(shù)的值;

3)是否存在正整數(shù),使得恰好為數(shù)列中的一項?若存在,求出所有滿足條件的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)hx)是定義在(﹣2,2)上,滿足h(﹣x)=﹣hx),且x∈(02)時,hx)=﹣2x,當x∈(﹣20)時,不等式[hx+2]2hxm1恒成立,則實數(shù)m的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在其圖象上存在不同的兩點,,其坐標滿足條件:的最大值為0,則稱柯西函數(shù),則下列函數(shù):①);②);③;④.其中為柯西函數(shù)的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE;

2)求二面角EFDC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是實數(shù).

1)當時,求證:在定義域內(nèi)是增函數(shù);

2)討論函數(shù)的零點個數(shù).

查看答案和解析>>

同步練習冊答案