19.已知函數(shù)f(x)=1+ln(x+1).
(1)求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)當x>0時,f(x)>$\frac{kx}{x+1}$恒成立,求整數(shù)k的最大值.

分析 (1)求出函數(shù)的導數(shù),計算f(0),f′(0),求出切線方程即可;
(2)問題轉(zhuǎn)化為$k<\frac{(x+1)[1+ln(x+1)]}{x}(x>0)$令$g(x)=\frac{(x+1)[1+ln(x+1)]}{x}(x>0)$,只需k<g(x)min即可,根據(jù)函數(shù)的單調(diào)性求出g(x)的最小值,求出j的最大值即可.

解答 解(1)f′(x)=$\frac{1}{x+1}$,
f′(0)=1,f(0)=1,
故切線方程是:y-1=x-0,
整理為:x-y+1=0;
(2)當x>0時,$f(x)>\frac{kx}{x+1}$恒成立,
即$k<\frac{(x+1)[1+ln(x+1)]}{x}(x>0)$
令$g(x)=\frac{(x+1)[1+ln(x+1)]}{x}(x>0)$,
只需k<g(x)min即可,
$g'(x)=-\frac{1}{x^2}[1-x+ln(x+1)]$
令$φ(x)=1-x+ln(x+1)x>0)⇒φ'(x)=-\frac{x}{x+1}<0$,
∴φ(x)在(0,+∞)上單調(diào)遞減,
又φ(2)=ln3-1>0,φ(3)=2ln2-2<0,
則存在實數(shù)t∈(2,3),使φ(t)=0,
從而t=1+ln(t+1),
∴g(x)在(0,t)上單調(diào)遞減,在(t,+∞)上單調(diào)遞增,
∴$g{(x)_{min}}=g(t)=\frac{(t+1)[1+ln(1+t)]}{t}=t+1∈(3,4)$,
∴kmax=3.

點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)$f(x)=\frac{3}{{\sqrt{1-x}}}$的定義域是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖:在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F(xiàn)分別是PB,PC的中點;
(1)證明:EF∥平面PAD;
(2)求三棱錐E-ABC的體積;
(3)求EC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\sqrt{3}t\\ y=4+t\end{array}\right.$(t為參數(shù)),圓C的極坐標方程是ρ=4sinθ,則直線l被圓C截得的弦長為( 。
A.2B.4C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.過雙曲線的左焦點F1且與雙曲線的實軸垂直的直線交雙曲線于A,B兩點,O為坐標原點且$\overrightarrow{OA}•\overrightarrow{OB}$=0,則雙曲線離心率e的值是$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.不等式(a-1)x2+2(a-1)x-2<0,對于x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知兩點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列直線:①y=x+1;②y=2x+1;③$y=\frac{4}{3}x$;④y=2,其中為“B型直線”的是(  )
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知偶函數(shù)f(x)在(-∞,0]上滿足:當x1,x2∈(-∞,0]且x1≠x2時,總有$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0$,則不等式f(x-1)≥f(x)的解集為$\{x∈R|x≤\frac{1}{2}\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)f(x)=xm+nx的導函數(shù)是f'(x)=2x+1,則$\int_{\;\;1}^{\;\;3}{f(-x)dx=}$(  )
A.1B.2C.$\frac{4}{3}$D.$\frac{14}{3}$

查看答案和解析>>

同步練習冊答案