分析 (1)三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,由g(A)=1求得A的值,再利用余弦定理、基本不等式求得bc的最大值,可得△ABC面積的最大值.
解答 解:(1)∵$f(x)=cosωx-\sqrt{3}sinωx=2cos(ωx+\frac{π}{3})$,f(m)=-2,f(n)=2,且|m-n|的最小值為$\frac{π}{2}$.
∴T=π,即$\frac{2π}{ω}=π,ω=2$,即$f(x)=2cos(2x+\frac{π}{3})$.
而f(x)在$2x+\frac{π}{3}∈[2kπ-π,2kπ],k∈Z$上單調(diào)遞增,求得x∈$[kπ-\frac{2π}{3},kπ-\frac{π}{6}],k∈Z$,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為$[kπ-\frac{2π}{3},kπ-\frac{π}{6}],k∈Z$.
(2)由題意可得,$g(x)=2cos[2(x-\frac{π}{3})+\frac{π}{3}]=2cos(2x-\frac{π}{3})$,
由g(A)=1可得,$2cos(2A-\frac{π}{3})=1$,而A∈(0,π),可得,$A=\frac{π}{3}$.
由余弦定理得:b2+c2-16=2bccosA=bc,
即bc+16=b2+c2≥2bc,求得bc≤16,當且僅當b=c時“=”成立,
所以${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}bc≤4\sqrt{3}$,故三角形面積的最大值為$4\sqrt{3}$.
點評 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦定理、基本不等式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016 | B. | 1680 | C. | 1344 | D. | 1008 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com