如圖,已知雙曲線以長方形ABCD的頂點(diǎn)A,B為左、右焦點(diǎn),且過C,D兩頂點(diǎn).若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為______.
精英家教網(wǎng)
由題意可得點(diǎn)OA=OB=2,AC=5
設(shè)雙曲線的標(biāo)準(zhǔn)方程是
x2
a2
-
y2
b2
=1

則2a=AC-BC=5-3=2,
所以a=1.
所以b2=c2-a2=4-1=3.
所以雙曲線的標(biāo)準(zhǔn)方程是 x2-
y2
3
=1

故答案為:x2-
y2
3
=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦點(diǎn)F2,點(diǎn)A是曲線C1,C2在第一象限的交點(diǎn),且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1,已知點(diǎn)P(1,
3
),過點(diǎn)P作互相垂直且分別與圓M圓N相交的直線l1,l2,設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,
s
t
是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計(jì)分.
(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點(diǎn)且與BC相切于點(diǎn)B,與AC交于點(diǎn)D,連接B、D,若BC=
5
-1
,求AC的長.
(2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點(diǎn)F為極點(diǎn),射線FO(O為坐標(biāo)原點(diǎn))為極軸,點(diǎn)M為雙曲線上任意一點(diǎn),其極坐標(biāo)是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關(guān)系式(將ρ用θ表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計(jì)分.
(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點(diǎn)且與BC相切于點(diǎn)B,與AC交于點(diǎn)D,連接B、D,若BC=數(shù)學(xué)公式,求AC的長.
(2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點(diǎn)F為極點(diǎn),射線FO(O為坐標(biāo)原點(diǎn))為極軸,點(diǎn)M為雙曲線上任意一點(diǎn),其極坐標(biāo)是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關(guān)系式(將ρ用θ表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省荊州中學(xué)高三第二次質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計(jì)分.
(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點(diǎn)且與BC相切于點(diǎn)B,與AC交于點(diǎn)D,連接B、D,若BC=,求AC的長.
(2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點(diǎn)F為極點(diǎn),射線FO(O為坐標(biāo)原點(diǎn))為極軸,點(diǎn)M為雙曲線上任意一點(diǎn),其極坐標(biāo)是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關(guān)系式(將ρ用θ表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省廣州市高考數(shù)學(xué)考前查漏補(bǔ)缺試卷(文科)(解析版) 題型:解答題

如圖,拋物線C1:y2=8x與雙曲線有公共焦點(diǎn)F2,點(diǎn)A是曲線C1,C2在第一象限的交點(diǎn),且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1.已知點(diǎn),過點(diǎn)P作互相垂直且分別與圓M、圓N相交的直線l1和l2,設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t.是否為定值?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案