某工廠在試驗階段大量生產一種零件,這種零件有、兩項技術指標需要檢測,設各項技術指標達標與否互不影響.若有且僅有一項技術指標達標的概率為,至少一項技術指標達標的概率為.按質量檢驗規(guī)定:兩項技術指標都達標的零件為合格品.
(1)求一個零件經過檢測為合格品的概率是多少?
(2)任意依次抽取該種零件個,設表示其中合格品的個數(shù),求的分布列及數(shù)學期望

(1);(2).

解析試題分析:(1)設、兩項技術指標達標的概率分別為,由題意得:,求得的值,再根據(jù),求得結果;(2)依題意知,可得分布列和的值.
試題解析:(1)設、兩項技術指標達標的概率分別為、,則
由題意得:
解得,∴  
即一個零件經過檢測為合格品的概率為.
(2)依題意知,其分布列為其中,
考點:離散型隨機變量及其分布列;離散型隨機變量的期望與方差.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

中國2010年上海世博會已于2010年5月1日在上海隆重開館.小王某天乘火車從重慶到上海去參觀世博會,若當天從重慶到上海的三列火車正點到達的概率分別為0.8、0.7、0.9,假設這三列火車之間是否正點到達互不影響.求:
(1)這三列火車恰好有兩列正點到達的概率;
(2)這三列火車至少有一列正點到達的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了了解青少年視力情況,某市從高考體檢中隨機抽取16名學生的視力進行調查,經醫(yī)生用對數(shù)視力表檢查得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:

(1)若視力測試結果不低丁5.0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(2)以這16人的樣本數(shù)據(jù)來估計該市所有參加高考學生的的總體數(shù)據(jù),若從該市參加高考的學生中任選3人,記表示抽到“好視力”學生的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某家電專賣店在五一期間設計一項有獎促銷活動,每購買一臺電視,即可通過電腦產生一組3個數(shù)的隨機數(shù)組,根據(jù)下表兌獎:

獎次
一等獎
二等獎
三等獎
隨機數(shù)組的特征
3個1或3個0
只有2個1或2個0
只有1個1或1個0
資金(單位:元)
5m
2m
m
 
商家為了了解計劃的可行性,估計獎金數(shù),進行了隨機模擬試驗,并產生了20個隨機數(shù)組,試驗結果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模擬的20組數(shù)中,隨機抽取3組數(shù),至少有1組獲獎的概率;
(2)根據(jù)以上模擬試驗的結果,將頻率視為概率:
(。┤艋顒悠陂g某單位購買四臺電視,求恰好有兩臺獲獎的概率;
(ⅱ)若本次活動平均每臺電視的獎金不超過260元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下列表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
 
5
 
女生
10
 
 
合計
 
 
50
 
已知在全班50人中隨機抽取1人,抽到喜愛打籃球的學生的概率為
(1)請將上表補充完整(不用寫計算過程);
(2)能否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由.下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

自駕游從A地到B地有甲乙兩條線路,甲線路是A-C-D-B,乙線路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵車路段.假設這三條路段堵車與否相互獨立.這三條路段的堵車概率及平均堵車時間如表所示.

 
CD段
EF段
GH段
堵車概率



平均堵車時間
(單位:小時)

2
1
 
經調查發(fā)現(xiàn),堵車概率上變化,上變化.
在不堵車的情況下,走甲線路需汽油費500元,走乙線路需汽油費545元.而每堵車1小時,需多花汽油費20元.路政局為了估計段平均堵車時間,調查了100名走甲線路的司機,得到下表數(shù)據(jù).
堵車時間(單位:小時)
頻數(shù)
[0,1]
8
(1, 2]
6
(2, 3]
38
(3, 4]
24
(4, 5]
24
 
(1)求段平均堵車時間的值;
(2)若只考慮所花汽油費的期望值大小,為了節(jié)約,求選擇走甲線路的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為喜迎馬年新春佳節(jié),某商場在正月初六進行抽獎促銷活動,當日在該店消費滿500元的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標有 “馬”“上”“有”“錢”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復以上操作,最多取4次,并規(guī)定若取出“錢”字球,則停止取球.獲獎規(guī)則如下:依次取到標有“馬”“上”“有”“錢”字的球為一等獎;不分順序取到標有“馬”“上”“有”“錢”字的球,為二等獎;取到的4個球中有標有“馬”“上”“有”三個字的球為三等獎.
(1)求分別獲得一、二、三等獎的概率;
(2)設摸球次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

有四條線段,其長度分別為2,3,4,5,現(xiàn)從中任取三條,則以這三條線段為邊可以構成三角形的概率是    

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某停車場臨時停車按時段收費,收費標準為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人在該停車場臨時停車,兩人停車都不超過4小時.
(1)若甲停車1小時以上且不超過2小時的概率為,停車付費多于14元的概率為,求甲臨時停車付費恰為6元的概率;
(2)若每人停車的時間在每個時段的可能性相同,求甲、乙二人停車付費之和為36元的概率.

查看答案和解析>>

同步練習冊答案