(14分)在數(shù)列中,,.

(1)試比較的大小關系;

(2)證明:當時,.

解析:(1)由題設知,對任意,都有

(也可以用商比較法)                                   (6分)

(2)由已知得:

時,

                                                     (10分)

  ①

②得

,

時,.                                               (14分)

注:解答題若有其它解法,只要解答正確,請酌情給分。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)

在數(shù)列中,=0,且對任意k,成等差數(shù)列,其公差為2k.

(Ⅰ)證明成等比數(shù)列;

(Ⅱ)求數(shù)列的通項公式;

(Ⅲ)記,證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建晉江養(yǎng)正中學高二本部上期期中考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)在數(shù)列中,是數(shù)列項和,,當

 (I)求證:數(shù)列是等差數(shù)列;

 (II)設求數(shù)列的前項和;

(III)是否存在自然數(shù),使得對任意自然數(shù),都有成立?若存在,求出的最大值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省寧波市十校高三聯(lián)考數(shù)學理卷 題型:解答題

(本題滿分14分)

    在數(shù)列中,時,其前項和滿足:

   (Ⅰ)求;

   (Ⅱ)令,求數(shù)列的前項和

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市調研考試數(shù)學理卷 題型:解答題

(本題滿分14分)

在數(shù)列中,已知

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆廣東揭陽市高三上學期期末數(shù)學卷 題型:解答題

(本題滿分14分)
在數(shù)列中,已知
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和

查看答案和解析>>

同步練習冊答案