【題目】將函數(shù)的圖象向左平移個(gè)單位,再將所得圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到的圖象,則的可能取值為( )

A. B.

C. D.

【答案】A

【解析】分析:首先求得函數(shù)的解析式,然后結(jié)合函數(shù)平移變換和伸縮變換的規(guī)律考查所給的選項(xiàng)即可求得最終結(jié)果.

詳解:函數(shù)的解析式:,

逐一考查所給的選項(xiàng):

A.向左平移個(gè)單位,

得到函數(shù)的解析式,

再將所得圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,

得到函數(shù)的解析式,

,符合題意;

B.向左平移個(gè)單位,

得到函數(shù)的解析式,

再將所得圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,

得到函數(shù)的解析式,

,不合題意;

C.,向左平移個(gè)單位,

得到函數(shù)的解析式,

再將所得圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,

得到函數(shù)的解析式,

,不合題意;

D.向左平移個(gè)單位,

得到函數(shù)的解析式,

再將所得圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,

得到函數(shù)的解析式,

,不合題意;

本題選擇A選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線(xiàn)的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線(xiàn)段的中點(diǎn)的軌跡為,與直線(xiàn)交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, , , 的中點(diǎn), 的中點(diǎn),且為正三角形.

(1)求證: 平面

(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,圓經(jīng)過(guò)橢圓的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)在橢圓上,且,.

(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);

(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與圓相交于兩點(diǎn),過(guò)點(diǎn)垂直的直線(xiàn)與橢圓相交于另一點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家銷(xiāo)售公司擬各招聘一名產(chǎn)品推銷(xiāo)員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷(xiāo)售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷(xiāo)售量不超過(guò)45件沒(méi)有提成,超過(guò)45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷(xiāo)員的日工資(單位: 元) 分別表示為日銷(xiāo)售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷(xiāo)員,對(duì)他們過(guò)去100天的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷(xiāo)員的日工資為,乙公司該推銷(xiāo)員的日工資為(單位: 元),將該頻率視為概率,請(qǐng)回答下面問(wèn)題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷(xiāo)員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,,分別是其左、右焦點(diǎn),且過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱(chēng)為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿(mǎn)分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(63),每科目滿(mǎn)分100.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

1)已知抽取的名學(xué)生中含男生55人,求的值;

2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

3)在抽取到的女生中按(2)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)(常數(shù)).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求實(shí)數(shù)的最大整數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案