設(shè)a、b是兩個(gè)非零實(shí)數(shù),給出下列三個(gè)不等式:
①a5+b5>a3b2+a2b3;②a2+b2≥2(a-b-1);③
a
b
+
b
a
>2

其中恒成立的不等式是
 
;(只要寫出序號)
分析:令a=b,我們可以判斷①的真假;根據(jù)實(shí)數(shù)的性質(zhì),我們可得(a-1)2+(b+1)2≥0,進(jìn)而判斷②的真假;根據(jù)基本不等式,我們可以求出
a
b
+
b
a
的取值范圍,進(jìn)而得到答案.
解答:解:若a=b,則a5+b5=a3b2+a2b3,故①不恒成立;
∵(a-1)2+(b+1)2≥0恒成立,故②a2+b2≥2(a-b-1)恒成立;
當(dāng)a,b異號時(shí),
a
b
+
b
a
≤-2
,當(dāng)a,b同號時(shí),
a
b
+
b
a
≥2
,故③不恒成立;
故答案為:②
點(diǎn)評:本題考查的知識點(diǎn)是不等式,其中熟練掌握基本不等式及相應(yīng)的推論是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽三模)已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東高一12月質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:選擇題

已知在區(qū)間上是增函數(shù),實(shí)數(shù)組成集合;設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根實(shí)數(shù)使得不等式使得對任意恒成立,則的解集是(    )

A.         B. 

C.                D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二“零診”考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中a,b為實(shí)常數(shù))。

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間:

(Ⅱ)當(dāng)時(shí),函數(shù)有三個(gè)不同的零點(diǎn),證明:

(Ⅲ)若在區(qū)間上是減函數(shù),設(shè)關(guān)于x的方程的兩個(gè)非零實(shí)數(shù)根為。試問是否存在實(shí)數(shù)m,使得對任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省綿陽市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案