20.已知銳角θ滿足sin(${\frac{θ}{2}$+$\frac{π}{6}}$)=$\frac{4}{5}$,則cos(θ+$\frac{5π}{6}}$)的值為$-\frac{24}{25}$.

分析 利用同角三角函數(shù)關(guān)系和誘導(dǎo)公式進(jìn)行化簡求值.

解答 解:∵sin(${\frac{θ}{2}$+$\frac{π}{6}}$)=$\frac{4}{5}$,
∴sin2(${\frac{θ}{2}$+$\frac{π}{6}}$)=$\frac{1}{2}$[1-cos(θ+$\frac{π}{3}$)]=$\frac{16}{25}$,則cos(θ+$\frac{π}{3}$)=-$\frac{7}{25}$,
∵0<θ<$\frac{π}{2}$,
∴$\frac{π}{3}$<θ+$\frac{π}{3}$<$\frac{5π}{6}$,
∴sin(θ+$\frac{π}{3}$)>0,
∴sin(θ+$\frac{π}{3}$)=$\sqrt{1-(-\frac{7}{25})^{2}}$=$\frac{24}{25}$
∴cos(θ+$\frac{5π}{6}$)=cos($\frac{π}{2}$+θ+$\frac{π}{3}$)=-sin(θ+$\frac{π}{3}$)=-$\frac{24}{25}$,
故答案為:$-\frac{24}{25}$.

點評 本題考查了三角函數(shù)的化簡求值,熟記公式即可解答,屬于基礎(chǔ)題,考查學(xué)生的計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=21-|x|的值域是( 。
A.(0,+∞)B.(-∞,2]C.(0,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個函數(shù)中,在定義域上不是單調(diào)函數(shù)的是( 。
A.y=-2x+1B.y=$\frac{1}{x}$C.y=lgxD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下列幾個命題:
①方程x2+(a-3)x+a=0若有一個正實根和一個負(fù)實根,則a<0;
②函數(shù)y=$\sqrt{{x^2}-1}$+$\sqrt{1-{x^2}}$是偶函數(shù)也是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域為[-3,1];
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值可能是1.
其中錯誤的有③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)a∈R,若復(fù)數(shù)(1+i)(a+i)的虛部為零,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=x3-3x在區(qū)間[a-1,a+1](a≥0)上的最大值與最小值之差為4,則實數(shù)a的值為1或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某校有足球、籃球、排球三個興趣小組,共有成員120人,其中足球、籃球、排球的成員分別有40人、60人、20人.現(xiàn)用分層抽樣的方法從這三個興趣小組中抽取24人來調(diào)查活動開展情況,則在足球興趣小組中應(yīng)抽取8人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知奇函數(shù)f(x)是定義在(-1,1)上的減函數(shù),且f(1-t)+f(1-t2)<0,則 t的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線f(x)=x2+2x-ex在點(0,f(0))處的切線的方程為( 。
A.y=x-1B.y=x+1C.y=2x-1D.y=2x+1

查看答案和解析>>

同步練習(xí)冊答案