在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2+b2+
2
ab=c2
(1)求C;
(2)設(shè)cosAcosB=
3
2
5
cos(α+A)cos(α+B)
cos2α
=
2
5
,求tanα的值.
(1)∵a2+b2+
2
ab=c2,即a2+b2-c2=-
2
ab,
∴由余弦定理得:cosC=
a2+b2-c2
2ab
=
-
2
ab
2ab
=-
2
2
,
又C為三角形的內(nèi)角,
則C=
4
;
(2)由題意
cos(α+A)cos(α+B)
cos2α
=
(cosαcosA-sinαsinA)(cosαcosB-sinαsinB)
cos2α
=
2
5

∴(cosA-tanαsinA)(cosB-tanαsinB)=
2
5
,
即tan2αsinAsinB-tanα(sinAcosB+cosAsinB)+cosAcosB=tan2αsinAsinB-tanαsin(A+B)+cosAcosB=
2
5

∵C=
4
,A+B=
π
4
,cosAcosB=
3
2
5
,
∴sin(A+B)=
2
2
,cos(A+B)=cosAcosB-sinAsinB=
3
2
5
-sinAsinB=
2
2
,即sinAsinB=
2
10
,
2
10
tan2α-
2
2
tanα+
3
2
5
=
2
5
,即tan2α-5tanα+4=0,
解得:tanα=1或tanα=4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊答案