已知函數(shù)f(x)=x3+bx2-3x(b∈(-∞,0]),且函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1、x2,都有[f(x1)-f(x2)]≤c,求實(shí)數(shù)c的最小值;
(3)若過(guò)點(diǎn)M(2,m)(m≠2),可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
解:(1)由題意得f′(x)=3x2+2bx-3,
因?yàn)楹瘮?shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,
所以,對(duì)x∈[1,+∞)恒成立,
所以對(duì)x∈[1,+∞)恒成立,
,則,所以當(dāng)x∈[1,+∞)時(shí),ψ′(x)<0恒成立,
所以函數(shù)ψ(x)是[1,+∞)上的單調(diào)減函數(shù),
所以當(dāng)x∈[1,+∞)時(shí),函數(shù)ψ(x)的最大值是ψ(1)=0,
故2b≥0,即b≥0,又因?yàn)閎∈(-∞,0],所以b=0,
∴f(x)=x3-3x。
(2)由(1)可得,f′(x)=3x2-3,由f′(x)=3x2-3=0解得x=±1,

∵f(-1)=2,f(1)=-2,
∴當(dāng)x∈[-2,2]時(shí),,
則對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2,都有
所以c≥4,所以c的最小值為4。
(3)∵點(diǎn)M(2,m)(m≠2)不在曲線y=f(x)上,
∴設(shè)切點(diǎn)為(x0,y0),則,
,
∴切線的斜率為,則
,
因?yàn)檫^(guò)點(diǎn)M(2,m)(m≠2),可作曲線y=f(x)的三條切線,
所以方程有三個(gè)不同的實(shí)數(shù)解.
即函數(shù)有三個(gè)不同的零點(diǎn),
則g′(x)=6x2-12x,令g′(x)=0,解得x=0或x=2,

由題意可得g(0)>0,且g(2)<0,
所以6+m>0,且m-2<0,解得:-6<m<2,
所以所求實(shí)數(shù)m的取值范圍是-6<m<2。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省東陽(yáng)中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說(shuō)法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案