已知a,b∈R,求證:a4+b4+1≥2ab(2-3ab)
考點(diǎn):不等式的證明
專(zhuān)題:證明題,作差法
分析:利用作差法,再進(jìn)行配方,即可證得結(jié)論.
解答: 證明:∵a,b∈R,
∴a4+b4+1-2ab(2-3ab)=a4+b4+2a2b2+4a2b2-4ab+1
=(a2+b22+(2ab-1)2≥0,
∴a4+b4+1≥2ab(2-3ab).
點(diǎn)評(píng):本題考查不等式的證明,考查作差法證明不等式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinx,cosx),
n
=(
3
2
,
3
2
)
,x∈R,函數(shù)f(x)=
m•
n

(Ⅰ)求f(x)的最大值;
(Ⅱ)在△ABC中,設(shè)角A,B的對(duì)邊分別為a,b,若B=2A,且b=2af(A-
π
6
),求角C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且有
tanA+tanC
3
=
sinB
cosC

(1)求cosA的值;
(2)若b=2,c=3,D為BC上一點(diǎn).且
CD
=2
DB
,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)設(shè)點(diǎn)M在線段PC上,
PM
MC
=
1
2
,求證:PA∥平面MQB;
(3)在(2)的條件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x2-2x+2m,當(dāng)x∈[-1,+∞)時(shí),f(x)≥m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)是a,求三棱錐B-AB1C的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)0<β<α<
π
2
,且cosα=
1
7
 ,  cos(α-β)=
13
14
,則tanβ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面向量
a
,
b
滿足
a
-3
b
 |≤ 
2
,則
a
b
的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案