精英家教網 > 高中數學 > 題目詳情
在平面α內有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且斜線SA、SB與平面α所成角相等.
(1)求證:AC=BC
(2)又設點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離.
(1)證明:過S作SO⊥面ABC于O,斜線SA、SB與平面α所成角相等
則∠SBO=∠SAO
∴AO=BO
∵SA⊥AC,SO⊥AC,SA∩SO=S
∴AC⊥面SAO,AO?面SAO
∴AC⊥AO,同理可證 BC⊥BO
而OC=OC
∴△AOC≌△BOC
∴AC=BC
(2)∵AC=BC,AC⊥AO,BC⊥BO
∴四邊形ABCD是正方形
∴OC=AB=6
即點O到AB的距離為3
∴S到AB的距離為
42+32
=5cm.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網在平面向量中有如下定理:設點O、P、Q、R為同一平面內的點,則P、Q、R三點共線的充要條件是:存在實數t,使
OP
=(1-t)
OQ
+t
OR
.試利用該定理解答下列問題:
如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設
AM
=x
AE
+y
AF
,則x+2y=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

6、有下列四個命題:
①在空間中,若OA∥OA′,OB∥OB′,則∠AOB=∠A′O′B′;
②直角梯形是平面圖形;
③{正四棱柱}⊆直平行六面體}⊆{長方體};
④在四面體P-ABC中,PA⊥BC,PB⊥AC,則點A在平面PBC內的射影恰為△PBC的垂心,其中逆否命題為真命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•惠州二模)在平面向量中有如下定理:設點O,P,Q,R為同一平面內的點,則P,Q,R三點共線的充要條件是:存在實數t,使
OP
=(1-t)
OQ
+t
OR
.如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設
AM
=x
AE
+y
AF
,則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面α內有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且斜線SA、SB與平面α所成角相等.
(1)求證:AC=BC
(2)又設點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面向量中有如下定理:設點O,P,Q,R為同一平面內的點,則P、Q、R三點共線的充要條件是:存在實數t,使.試利用該定理解答下列問題:如圖,

 


在ΔABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設,則x+y=     .

查看答案和解析>>

同步練習冊答案