已知F是拋物線y2=x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),,則線
AB的中點(diǎn)到y軸的距離為
A.B.1C.D.
C

分析:根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出A,B的中點(diǎn)橫坐標(biāo),求出線段AB的中點(diǎn)到y(tǒng)軸的距離.
解答:解:∵F是拋物線y2=x他焦點(diǎn)
F(,n)準(zhǔn)線方程x=-
設(shè)A(x1,y1),B(x2,y2
∴|AF|+|BF|=x1++x2+=3
解得x1+x2=
∴線段AB他3點(diǎn)橫坐標(biāo)為
∴線段AB他3點(diǎn)到y(tǒng)軸他距離為
故答案為:C.
點(diǎn)評(píng):本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖6,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),
是線段軸的交點(diǎn), .

(I)求動(dòng)點(diǎn)的軌跡的方程;
(II)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長(zhǎng)是否為定值?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖邊長(zhǎng)為2的正方形花園的一角是以A為中心,1為半徑的扇形水池.現(xiàn)需在其余部分設(shè)計(jì)一個(gè)矩形草坪PNCQ,其中P是水池邊上任意一點(diǎn),點(diǎn)N、Q分別在邊BC和CD上,設(shè)∠PAB為θ.
(I)用θ表示矩形草坪PNCQ的面積,并求其最小值;
(II)求點(diǎn)P到邊BC和AB距離之比的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)、,是直線上任意一點(diǎn),以
焦點(diǎn)的橢圓過點(diǎn).記橢圓離心率關(guān)于的函數(shù)為,那么下列結(jié)論正確的是(  )                                                                                        
A.一一對(duì)應(yīng)B.函數(shù)無最小值,有最大值
C.函數(shù)是增函數(shù)D.函數(shù)有最小值,無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,斜率為的直線過橢圓的上焦點(diǎn)且與橢圓相交于兩點(diǎn),線段的垂直平分線與軸相交于點(diǎn)
(Ⅰ)求的取值范圍;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。
(1)求橢圓的方程;
(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


本小題滿分12分)
如圖,已知橢圓C1的中心在原點(diǎn)O,長(zhǎng)軸左、右端點(diǎn)M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D.

(1)設(shè),求的比值;
(2)當(dāng)e變化時(shí),是否存在直線l,使得BO∥AN,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于)兩點(diǎn),且
(1)求該拋物線的方程;
(2)為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)





圓中,求面積最小的圓的半徑長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案