18.已知曲線C1:$\left\{\begin{array}{l}{x=1+t}\\{y=-3-\frac{3}{4}t}\end{array}\right.$(t為參數(shù))與曲線C2:ρ2-4ρ•cosθ-21=0交于A,B兩點,求線段AB的長,并說明C1,C2分別是什么曲線?

分析 曲線C1:$\left\{\begin{array}{l}{x=1+t}\\{y=-3-\frac{3}{4}t}\end{array}\right.$(t為參數(shù)),把t=x-1代入y=-3-$\frac{3}{4}$t,可得普通方程.曲線C2:ρ2-4ρ•cosθ-21=0,利用互化公式可得:直角坐標(biāo)方程.求出圓心曲線C2到直線的距離d,可得|AB|=2$\sqrt{{r}^{2}-z4jqnzy^{2}}$.

解答 解:曲線C1:$\left\{\begin{array}{l}{x=1+t}\\{y=-3-\frac{3}{4}t}\end{array}\right.$(t為參數(shù)),把t=x-1代入y=-3-$\frac{3}{4}$t,可得y=-3-$\frac{3}{4}$(x-1),化為:3x+4y+9=0,因此曲線C1表示直線.
曲線C2:ρ2-4ρ•cosθ-21=0,利用互化公式可得:x2+y2-4x-21=0,配方為(x-2)2+y2=25,曲線C2表示圓心為C2(2,0),半徑為r=5.
圓心曲線C2到直線的距離d=$\frac{|2×3+0+9|}{\sqrt{{3}^{2}+{4}^{2}}}$=3,
∴|AB|=2$\sqrt{{r}^{2}-gzzb4ux^{2}}$=2×$\sqrt{{5}^{2}-{3}^{2}}$=8.

點評 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點到直線的距離公式、直線與圓相交弦長公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓柱M的底面半徑為2,高為$\frac{2\sqrt{3}}{3}$,圓錐N的底面直徑和母線長相等,若圓柱M 和圓錐N的體積相同,則圓錐N的底面半徑為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,a1=1,且點P(an,Sn)(其中n≥1且n∈N*)在直線4x-3y-1=0上,數(shù)列$\{\frac{1}{b_n}\}$是首項為-1,公差為-2的等差數(shù)列.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)${c_n}=\frac{1}{{{a_n}{b_n}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“?x∈R,x2-2x+1<0”的否定是( 。
A.?x∈R,x2-2x+1≥0B.?x∈R,x2-2x+1>0C.?x∈R,x2-2x+1≥0D.?x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“任意x∈R,|x|+x2≥0”的否定是( 。
A.任意x∈R,|x|+x2<0B.存在x∈R,|x|+x2≤0
C.存在x0∈R,|x0|+x02<0D.存在x0∈R,|x0|+x02≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)y=f(2x)的定義域是[1,2],則函數(shù)f(log2x)的定義域是( 。
A.[1,2]B.[4,16]C.[0,1]D.[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的前n項和為Sn,且S6=S3+14,a6=10-a4,a4>a3
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}中,bn=log2 an,求數(shù)列{an•bn }的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為A1B1,CD的中點.
(1)求直線EC與平面B1BCC1所成角的大小的正弦值;
(2)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知兩個定點A(-2,0),B(1,0),動點P滿足|PA|=2|PB|.設(shè)動點P的軌跡為曲線C,過點(0,-3)的直線l與曲線C交于不同的兩點D(x1,y1),E(x2,y2).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)求直線l斜率的取值范圍;
(Ⅲ)若x1x2+y1y2=3,求|DE|.

查看答案和解析>>

同步練習(xí)冊答案