雙曲線-y2=1的頂點(diǎn)到其漸近線的距離等于________.

 

【解析】由-y2=1知頂點(diǎn)(2,0),漸近線x±2y=0,

∴頂點(diǎn)到漸近線的距離d=.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題

如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時(shí)的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時(shí)從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時(shí)追上.

(1)求漁船甲的速度.

(2)求sinα的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:選擇題

(2014·黃岡模擬)設(shè)a,b是平面α內(nèi)兩條不同的直線,l是平面α外的一條直線,則“l(fā)⊥a,l⊥b”是“l(fā)⊥α”的( )

A.充要條件 B.充分不必要條件

C.必要不充分條件 D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語(yǔ)、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題

設(shè)變量x,y滿足約束條件,則目標(biāo)函數(shù)z=2x+3y+1的最大值為( )

A.11 B.10 C.9 D.8.5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.

(1)證明:A1C⊥平面BB1D1D;

(2)求平面OCB1與平面BB1D1D的夾角θ的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

直線l過(guò)拋物線C:x2=4y的焦點(diǎn)且與y軸垂直,則l與C所圍成的圖形的面積等于(  )

A. B.2 C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

若k,-1,b三個(gè)數(shù)成等差數(shù)列,則直線y=kx+b必經(jīng)過(guò)定點(diǎn)(  )

A.(1,-2) B.(1,2) C.(-1,2) D.(-1,-2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

設(shè)z=x+y,其中實(shí)數(shù)x,y滿足,若z的最大值為6,則z的最小值為(  )

A.-3 B.-2 C.-1 D.0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題

(2013·寧波模擬)等差數(shù)列{an}中,已知a1=-12,S13=0,使得an>0的最小正整數(shù)n為(  )

A.7    B.8    C.9    D.10

 

查看答案和解析>>

同步練習(xí)冊(cè)答案