如圖所示,已知A是△BCD所在平面外一點(diǎn),連接AB、AC、AD后,∠ADB=,AD=BD=,∠ABC=,AC⊥平面BDC,求二面角D-AB-C的余弦值.

答案:
解析:

  如圖,取AB中點(diǎn)E,連接DE,∵AD=BD=,所以DE⊥AB.在△ABC中,作EF⊥AB交BC于F,連接DF,∠DEF為二面角D-AB-C的平面角.AC⊥平面BCD,AD⊥BD,∴BD⊥CD.Rt△ADB中,AD=BD=,AB==2,E為AB中點(diǎn),AE=EB=AB=1;Rt△ADE中,DE==1,Rt△EBF中,∠EBF=.∴EF=1×tan,BF=.Rt△ABC中,BC=2cos;Rt△BDC中,cosα=,其中∠DBC=α.

  △BDF中,DF=

  △DEF中,cosA=

  ∴二面角D-AB-C的余弦值為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若AD=3,AC=2,則cosD的值為( 。
精英家教網(wǎng)
A、
1
3
B、
5
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且
AC
BC
=0
,|BC|=2|AC|.
(I)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(II)如果橢圓上有兩點(diǎn)P、Q,使∠PCQ的平分線垂直于AO,證明:存在實(shí)數(shù)λ,使
PQ
AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知D是面積為1的△ABC的邊AB上任一點(diǎn),E是邊AC上任一點(diǎn),連接DE,F(xiàn)是線段DE上一點(diǎn),連接BF,設(shè)
AD
=λ1
AB
,
AE
=λ2
AC
,
DF
=λ3
DE
,且λ2+λ3-λ1=
1
2
,記△BDF的面積為s=f(λ1,λ2,λ3),則S的最大值是(  )
【注:必要時(shí),可利用定理:若a,b,c∈R+,則abc≤(
a+b+c
3
)3
,(當(dāng)且僅當(dāng)a=b=c時(shí),取“=”)】

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是圓O上三個(gè)點(diǎn),AB弧等于BC弧,D為弧AC上一點(diǎn),過(guò)點(diǎn)A做圓O的切線交BD延長(zhǎng)線于E
(1)求證:AB平分∠CAE;
(2)若AD•BE=2
6
,∠ADE=30°
,求△ABE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案