【題目】下列說法正確的是(
A.命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2 , 則a≤b”
B.“x=1”是“x2﹣3x+2=0”的必要不充分條件
C.若p∧q為假命題,則p,q均為假命題
D.對于命題p:x∈R,x2+x+1>0,則¬p:x0∈R,x02+x0+1≤0

【答案】D
【解析】解:對于選項A:原命題的逆否命題為“若a2<b2 , 則a<b”,故A錯誤;
對于選項B:由x2﹣3x+2=0解得x=1,或x=2,從集合的角度考慮,由于{1}{1,2},則“x=1”是“x2﹣3x+2=0”的充分不必要條件,故B錯誤;
對于選項C:若p∧q為假命題,則p真q假,p假q真,或者p,q均為假命題,故C錯誤;
對于選項D:根據(jù)命題的否定的定義,全稱命題改為特稱命題,再否定結論,故D正確.
故選:D
【考點精析】本題主要考查了命題的真假判斷與應用的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x||x|<2},B={﹣1,0,1,2,3},則A∩B=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x||x﹣2|≤2,x∈R},B={y|y=﹣x2 , ﹣1≤x≤2},則A∩B等于( )
A.R
B.{0}
C.{x|x∈R,x≠0}
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知Cn+17﹣Cn7=Cn8 , 那么n的值是(
A.12
B.13
C.14
D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,假設正確的是(
A.假設三內(nèi)角都不大于60度
B.假設三內(nèi)角都大于60度
C.假設三內(nèi)角至多有一個大于60度
D.假設三內(nèi)角至多有兩個大于60度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集I=R,集合A={y|y=log2x,x>2},B={y|y≥1},則(
A.A∪B=A
B.AB
C.A∩B=
D.A∩(IB)≠

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線f(x)=sinx+ex+2在點(0,f(0))處的切線方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|﹣1<x<2},B={x|0<x<3},則A∪B=(
A.(﹣1,3)
B.(﹣1,0)
C.(0,2)
D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)學歸納法證明“當n 為正奇數(shù)時,xn+yn能被x+y整除”,在第二步時,正確的證法是(
A.假設n=k(k∈N*),證明n=k+1命題成立
B.假設n=k(k為正奇數(shù)),證明n=k+1命題成立
C.假設n=2k+1(k∈N*),證明n=k+1命題成立
D.假設n=k(k為正奇數(shù)),證明n=k+2命題成立

查看答案和解析>>

同步練習冊答案