已知某廠生產(chǎn)x件產(chǎn)品的總成本為f(x)=25000+200x+
1
40
x2
(元).
(1)要使生產(chǎn)x件產(chǎn)品的平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?
(1)設(shè)生產(chǎn)x件產(chǎn)品的平均成本為y元,則y=
25000+200x+
1
40
x2
x
=
25000
x
+200+
1
40
x(x>0)
(2分)y′=-
25000
x2
+
1
40
(3分)
令y'=0,得x1=1000,x2=-1000(舍去)(4分)
當(dāng)x∈(0,1000)時,y取得極小值.
由于函數(shù)只有一個極值點(diǎn),所以函數(shù)在該點(diǎn)取得最小值,
因此要使平均成本最低,應(yīng)生產(chǎn)1000件產(chǎn)品(6分)
(2)利潤函數(shù)L(x)=500x-(25000+200x+
x2
40
)=300x-25000-
1
40
x2
(8分)L′(x)=300-
x
20
(9分)
令L'(x)=0,得x=6000(10分)
當(dāng)x∈(0,6000)時,L'(x)>0
當(dāng)x∈(6000,+∞)時,L'(x)<0∴x=6000時,L(x)取得極大值,即函數(shù)在該點(diǎn)取得最大值,
因此要使利潤最大,應(yīng)生產(chǎn)6000件產(chǎn)品(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某廠生產(chǎn)x件產(chǎn)品的總成本為f(x)=25000+200x+
140
x2
(元).
(1)要使生產(chǎn)x件產(chǎn)品的平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市潼南縣柏梓中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知某廠生產(chǎn)x件產(chǎn)品的總成本為f(x)=25000+200x+(元).
(1)要使生產(chǎn)x件產(chǎn)品的平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省邵陽市洞口一中高二(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知某廠生產(chǎn)x件產(chǎn)品的總成本為f(x)=25000+200x+(元).
(1)要使生產(chǎn)x件產(chǎn)品的平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省邵陽市洞口一中高二(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知某廠生產(chǎn)x件產(chǎn)品的總成本為f(x)=25000+200x+(元).
(1)要使生產(chǎn)x件產(chǎn)品的平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《導(dǎo)數(shù)及其應(yīng)用》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(北京郵電大學(xué)附中)(解析版) 題型:解答題

已知某廠生產(chǎn)x件產(chǎn)品的總成本為f(x)=25000+200x+(元).
(1)要使生產(chǎn)x件產(chǎn)品的平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?

查看答案和解析>>

同步練習(xí)冊答案