設(shè)數(shù)列{an}滿足a1+2a2=3,且對任意的n∈N*,點(diǎn)列{Pn(n,an)}恒滿足PnPn+1=(1,2),則數(shù)列{an}的前n項(xiàng)和Sn為( )
A.n(n-) B.n(n-)
C.n(n-) D.n(n-)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1、F2為橢圓+y2=1的左、右焦點(diǎn),過橢圓中心任作一直線與橢圓交于P、Q兩點(diǎn),當(dāng)四邊形PF1QF2面積最大時(shí),的值等于( )
A.0 B.2 C.4 D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列{an}的通項(xiàng)公式an=2n·sin,前n項(xiàng)和為Sn,則S2013=( )
A.1007 B.-1007
C.2013 D.-2013
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列2008,2009,1,-2008,-2009,…這個(gè)數(shù)列的特點(diǎn)是從第二項(xiàng)起,每一項(xiàng)都等于它的前后兩項(xiàng)之和,則這個(gè)數(shù)列的前2014項(xiàng)之和S2014等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=2,{an}的“差數(shù)列”的通項(xiàng)為2n,則數(shù)列{an}的前n項(xiàng)和Sn=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知{an}是等差數(shù)列,Sn為其前n項(xiàng)和,若S21=S4000,O為坐標(biāo)原點(diǎn),點(diǎn)P(1,an),Q(2011,a2011),則等于( )
A.2011 B.-2011 C.0 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(an+2,Sn+1)在直線y=4x-5上,其中n∈N*.令bn=an+1-2an,且a1=1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若f(x)=b1x+b2x2+b3x3+…+bnxn,求f ′(1)的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com