已知||=6,||=4,則||的取值范圍為

[  ]

A.(2,8)

B.[2,8]

C.(2,10)

D.[2,10]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(必修5) 2009-2010學(xué)年 第5期 總第161期 北師大課標(biāo)版(必修5) 題型:022

在△ABC中,已知a6,B105°,C15°,則此三角形的最大邊的長(zhǎng)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省、二中高二上學(xué)期期末聯(lián)考文科數(shù)學(xué)卷(解析版) 題型:解答題

電視傳媒公司為了解某地區(qū)觀眾對(duì)某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名。下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為“體育迷”,已知“體育迷”中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認(rèn)為“體育迷”與性別有關(guān)?

 

非體育迷

體育迷

合計(jì)

 

 

 

 

 

 

合計(jì)

 

 

 

 (Ⅱ)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱(chēng)為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2名,求至少有1名女性觀眾的概率.

附:K2,其中nabcd.

P(K2k)

0.05

0.01

k

3.841

6.635

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問(wèn)中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問(wèn)中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,

當(dāng)2x-, 即x=時(shí),f(x)max=1

第三問(wèn)中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時(shí),f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知sina=,aÎ(,p),cosb=-,b是第三象限的角.

⑴ 求cos(a-b)的值;

⑵ 求sin(a+b)的值;

⑶ 求tan2a的值.

【解析】第一問(wèn)中∵ aÎ(,p),∴ cosa=-=-,  ∵ b是第三象限的角,

∴ sinb=-=-,     

cos(a-b)=cosa·cosb+sina·sinb =(-)×(-)+×(-)=- 

⑵ 中sin(a+b)=sina·cosb+cosa·sinb       =×(-)+(-)×(-)= ⑶ 利用二倍角的正切公式得到。∵tana==- ∴tan2a= ==- 

解∵ aÎ(,p),∴ cosa=-=-,         …………1分

∵ b是第三象限的角,∴ sinb=-=-,        ………2分

⑴ cos(a-b)=cosa·cosb+sina·sinb          …………3分

=(-)×(-)+×(-)=-          ………………5分

⑵ sin(a+b)=sina·cosb+cosa·sinb          ……………………6分

×(-)+(-)×(-)=           …………………8分

⑶ ∵tana==-             …………………9分

∴tan2a=             ………………10分

=-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,

求⑴ ∠ADB的大;⑵ BD的長(zhǎng).

【解析】本試題主要考查了三角形的余弦定理和正弦定理的運(yùn)用

第一問(wèn)中,∵cos∠ADC=

=-∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=∴ cos∠ADB=60°

第二問(wèn)中,結(jié)合正弦定理∵∠DAB=180°-∠ADB-∠B=75° 

    得BD==5(+1)

解:⑴ ∵cos∠ADC=

=-,……………………………3分

∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=,       ……………5分

∴ cos∠ADB=60°                                    ……………………………6分

⑵ ∵∠DAB=180°-∠ADB-∠B=75°                   ……………………………7分

                                 ……………………………9分

得BD==5(+1)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案