已知函數(shù)f(x)=1-
42ax+a
(a>0且a≠1)是定義在(-1,1)上的奇函數(shù).
(1)求a的值
(2)判斷函數(shù)f(x)的單調(diào)性(不用證明),并解關(guān)于t的不等式f(1-t)+f(3-2t)<0.
分析:(1)由奇函數(shù)的性質(zhì)可得f(0)=1-
4
2+a
=0,由此求得a的值.
(2)根據(jù)a=2可得f(x)的解析式,結(jié)合解析式可得函數(shù)在(-1,1)上是增函數(shù).不等式即f(1-t)<f(2t-3),再由 
-1<1-t<1
-1<2t-3<1
1-t<2t-3
,求得不等式的解集.
解答:解:(1)∵已知函數(shù)f(x)=1-
4
2ax+a
(a>0且a≠1)是定義在(-1,1)上的奇函數(shù),
∴f(0)=1-
4
2+a
=0,∴a=2.
(2)根據(jù)a=2可得f(x)=1-
4
2×2x+2
=1-
2
2x+1
,顯然在(-1,1)上是增函數(shù).
由于t的不等式f(1-t)+f(3-2t)<0,可得f(1-t)<-f(3-2t)=f(2t-3).
-1<1-t<1
-1<2t-3<1
1-t<2t-3

解得
4
3
<t<2,故不等式的解集為(
4
3
,2).
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性的性質(zhì),判斷函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性和求偶性解不等式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案