20.設函數(shù)f(x)=x2-ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2-ax+1>0的解集;
(2)當b=3-a時,對任意的x∈(-1,0]都有f(x)≥0成立,求實數(shù)a的取值范圍.

分析 (1)根據(jù)二次函數(shù)的性質(zhì)求出a,b的值,解不等式求出其解集即可;
(2)問題轉(zhuǎn)化為a≤${(\frac{{x}^{2}+3}{x+1})}_{min}$,設t=x+1,則t∈(0,1],從而求出a的范圍即可.

解答 解:(1)∵不等式x2-ax+b<0的解集是{x|2<x<3},
∴x=2,x=3是方程x2-ax+b=0的解,
由韋達定理得:a=5,b=6,
故不等式bx2-ax+1>0為6x2-5x+1>0,
解不等式6x2-5x+1>0,
得其解集為{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$}.
(2)據(jù)題意x∈(-1,0],f(x)=x2-ax+3-a≥0恒成立,
則可轉(zhuǎn)化為a≤${(\frac{{x}^{2}+3}{x+1})}_{min}$,
設t=x+1,則t∈(0,1],
$\frac{{x}^{2}+3}{x+1}$=$\frac{{(t-1)}^{2}+3}{t}$=t+$\frac{4}{t}$-2關于t遞減,
所以${(t+\frac{4}{t}-2)}_{min}$=1+4-2=3,
∴a≤3.

點評 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)恒成立問題,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{2^x}{{{2^x}+\sqrt{2}}}$.
(1)求f(x)+f(1-x)的值;
(2)若數(shù)列{an}滿足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足bn=2nan,Sn是數(shù)列{bn}的前n項和,是否存在正實數(shù)k,使不等式knSn>3bn對于一切的n∈N*恒成立?若存在,請求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在等比數(shù)列{an}中,前n項和Sn=2n+a(n∈N*),則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若y=|3sin(ωx+$\frac{π}{12}$)+2|的圖象向右平移$\frac{π}{6}$個單位后與自身重合,且y=tanωx的一個對稱中心為($\frac{π}{48}$,0),則ω的最小正值為24.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)=sin$\frac{πx+π}{3}$-$\sqrt{3}$cos$\frac{πx+π}{3}$,f(1)+f(2)+…+f(2014)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設函數(shù)f(x)=x2+2cosx,若f(x1)>f(x2),則下列不等式一定成立的是(  )
A.x1>x2B.|x1|<|x2|C.x1>|x2|D.x12>x22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列命題中,是假命題的是(  )
A.?x0∈R,sinx0+cosx0=$\sqrt{3}$B.?x0∈R,tanx0=2016
C.?x>0,x>lnxD.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和是Sn,且滿足2Sn=3an-$\frac{1}{2}$(n∈N*).
(1)求a1,a2,a3,a4,并猜想通項公式an(不用證明);
(2)設bn=1+2log3(2an),求證:$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.一份共3道題的測試卷,全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,若班級共有50名學生,則班級平均分為2.

查看答案和解析>>

同步練習冊答案