如圖,四棱錐中,,,平面⊥平面,是線段上一點(diǎn),,
(1)證明:⊥平面
(2)若,求直線與平面所成角的正弦值.
(1)證明詳見解析;(2)直線與平面所成角的正弦值為.

試題分析:(1)要證⊥平面,只須證明與平面內(nèi)的兩條相交直線垂直即可,對(duì)于的證明,只需要根據(jù)題中面面垂直的性質(zhì)及線面垂直的性質(zhì)即可得出,對(duì)于的證明,這需要在平面的直角梯形中根據(jù)得出,進(jìn)而可得出,問題得以證明;(2)分別以、所在的直線為、、軸建立空間直角坐標(biāo)系,進(jìn)而寫出有效點(diǎn)的坐標(biāo),設(shè)平面的法向量,由確定該法向量的一個(gè)坐標(biāo),進(jìn)而根據(jù)線面角的向量計(jì)算公式即可得出直線與平面所成角的正弦值.
(1)證明:由已知條件可知:在中,,所以
中,,所以
所以……①
又因平面⊥平面……②
由①②及可得⊥平面
(2)如圖分別以、、所在的直線為、軸建立空間直角坐標(biāo)系

,,,
所以,
設(shè)平面的法向量,則有:
,取,則
設(shè)直線直線與平面所成角為,有
所以直線與平面所成角的正弦值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在棱長(zhǎng)為2的正方體中,分別是棱的中點(diǎn),點(diǎn)分別在棱,上移動(dòng),且.
當(dāng)時(shí),證明:直線平面;
是否存在,使平面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在斜三棱柱中,平面平面ABC,,,.
(1)求證:;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形A1BA2C的邊長(zhǎng)為4,D是A1B的中點(diǎn),E是BA2上的點(diǎn),將△A1DC
及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求證:AC⊥DE;

(2)求二面角A-DE-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知的直徑,點(diǎn)上兩點(diǎn),且,,為弧的中點(diǎn).將沿直徑折起,使兩個(gè)半圓所在平面互相垂直(如圖2).

(1)求證:;
(2)在弧上是否存在點(diǎn),使得平面?若存在,試指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,AO⊥平面α,BC⊥OB,BC與平面α的夾角為30°,AO=BO=BC=a,則AC=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知矩形ABCD和矩形ADEF所在的平面互相垂直,點(diǎn)M,N分別在對(duì)角線BD,AE上,且BM=BD,AN=AE.求證:MN∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

A(5,-5,-6)、B(10,8,5)兩點(diǎn)的距離等于      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量a=(4,-2,-4),b=(6,-3,2),則(a+b)·(a-b)的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案