已知橢圓=1(ab>0)的焦點坐標(biāo)是F1(-c,0)和F2c,0),Px0,y0)是橢圓上的任一點,求證:|PF1|=a+ex0,|PF2|=a-ex0,其中e是橢圓的離心率.

證明:橢圓=1(ab>0)的焦點?F2c,0).?

∵橢圓上任一點到焦點的距離與它到直線x=的距離的比等于這個橢圓的離心率,?

=e.

化簡得|PF2|=a-ex0,同理可得

|PF1|=a+ex0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓=1(ab>0)的離心率為,,則橢圓方程為(  )

A.=1

B.=1

C.=1

D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省武漢市六校高三(上)第一次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知橢圓+=1(a>b>0)的中心為O,右焦點為F、右頂點為A,右準(zhǔn)線與x軸的交點為H,則的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓+=1(a>b>0)的中心為O,右焦點為F、右頂點為A,右準(zhǔn)線與x軸的交點為H,則的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省高二上學(xué)期12月份考試數(shù)學(xué)卷(文理) 題型:解答題

(12分)如圖,已知橢圓=1(a>b>0)過點(1,),離心率為,左、右焦點分別為F1、F2. 點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標(biāo)原點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2, 證明:=2;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省高二上學(xué)期12月份考試數(shù)學(xué)卷(文理) 題型:選擇題

已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P,若(應(yīng)為PB),則離心率為

A、         B、         C、           D、

 

查看答案和解析>>

同步練習(xí)冊答案