解方程:(x-5)3+x3+4x=10.
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:將方程轉(zhuǎn)化為(2x-5)(x2-5x+27)=0,解出即可.
解答: 解:∵(x-5)3+x3+4x=10,
∴2x3-15x2+79x-135=0,
∴2x3-5x2-10x2+79x-135=0,
∴x2(2x-5)-5x(2x-5)+27(2x-5)=0,
∴(2x-5)(x2-5x+27)=0,
解得:x=
5
2
,或x=
5
2
±
1
2
83
i.
點(diǎn)評(píng):本題考查了方程的根的個(gè)數(shù)問題,考查了方程的解法,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)之和為Sn,數(shù)列{an}由如下方式給定:
(k-1)k
2
<n≤
k(k+1)
2
(k∈N*)時(shí),an=(-1)n-1k,定義集合M={n|an是Sn的整數(shù)倍,n∈N*且1≤n≤10},則M中所有元素之和為( 。
A、21B、22C、44D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若PA⊥平面ABCD,且ABCD是矩形,若PA=3,AB=2,BC=2
3
,則二面角P-BD-A的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量ξ服從B~(6,
1
2
),則P(ξ=3)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A={x|x(x-3)≥0},函數(shù)y=ln(x-1)的定義域?yàn)榧螧,則A∩B=(  )
A、(1,3]
B、(1,+∞)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
9
=1,一組平行直線的斜率是
3
2
,這組直線何時(shí)與橢圓相交?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=4lnx-x2在點(diǎn)A(1,-1)處的切線的斜率是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對(duì)數(shù)得:lny=g(x)lnf(x),再兩邊同時(shí)求導(dǎo)得到:
1
y
•y′=g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x),于是得到y(tǒng)′=f(x)g(x)[g′(x)]lnf(x)+g(x)•
1
f(x)
•f′(x),運(yùn)用此方法求得函數(shù)y=x 
1
x
(x>0)的極值情況是( 。
A、極小值點(diǎn)為e
B、極大值點(diǎn)為e
C、極值點(diǎn)不存在
D、既有極大值點(diǎn),又有極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=4x2-2(p-2)x-4,若在區(qū)間[-1,1]內(nèi)至少存在一個(gè)實(shí)數(shù)c,使f(c)>0,則實(shí)數(shù)p的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案