已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(3,27),
(1)求函數(shù)f(x)的解析式;
(2)求f(5);
(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.
解:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(a>0,a≠1,x∈N+),因為函數(shù)f(x)的圖象經(jīng)過點(3,27),
所以f(3)=27,即a3=27,解得a=3,所以函數(shù)f(x)的解析式為f(x)=3x(x∈N+).
(2)由f(x)=3x(x∈N+),可得f(5)=35=243.
(3)∵f(x)的定義域為N+,且在定義域上單調(diào)遞增,
∴f(x)有最小值,最小值是f(1)=3;f(x)無最大值.
分析:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(x∈N+),由函數(shù)f(x)的圖象經(jīng)過點(3,27),求得a的值,可得函數(shù)f(x)的解析式.
(2)直接根據(jù)函數(shù)f(x)的解析式求得f(5)的值.
(3)由于f(x)的定義域為N+,且在定義域上單調(diào)遞增,可得f(x)的最大值和最小值的情況.
點評:本題主要考查指數(shù)函數(shù)的性質(zhì)的綜合應(yīng)用,用待定系數(shù)法求函數(shù)的解析式,利用函數(shù)的單調(diào)性求函數(shù)的最值,屬于中檔題.